In this paper, we propose a phase-conjugation-based fast radio frequency (RF) phase auto stabilization technique for long-distance fiber delivery. By phase conjugation at the center site, the proposed scheme pre-phase-promotes the RF signal with the shift which is acquired by round-trip transferring another RF whose frequency is half of the one to be sent. Such phase pre-promotion is then used to counteract exactly the following retard induced by one-way delivery. Different from the previous phase-locking-loop-based schemes, the proposed open-loop design avoids the use of any tunable parts and dynamic phase tracking, enabling a fast phase stabilization at the remote site. An end-less compensation capacity can also be achieved. Our design is analyzed by theory. Experimentally, the new scheme is verified by transferring a frequency of 2.42 GHz through a 30-km optical fiber link. Significant phase drift compression is observed. The rapid phase stabilization is verified by introducing sudden time delay change into the link. The recovery time equals to the round-trip time of the link plus the transitional duration of the delay change, which is much shorter than the traditional trial-and-error phase locking loop. Important issues of the system design are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.000878 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!