We propose a dual-layer transparent Indium Tin Oxide (ITO) top electrode scheme and demonstrate the enhancement of the optical output power of GaN-based light emitting diodes (LEDs). The proposed dual-layer structure is composed of a layer with randomly distributed sphere-like nano-patterns obtained solely by a maskless wet etching process and a pre-annealed bottom layer to maintain current spreading of the electrode. It was observed that the surface morphologies and optoelectronic properties are dependent on etching duration. This electrode significantly improves the optical output power of GaN-based LEDs with an enhancement factor of 2.18 at 100 mA without degradation in electrical property when compared to a reference LED.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.00A970 | DOI Listing |
Langmuir
December 2024
Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).
View Article and Find Full Text PDFIndian J Ophthalmol
December 2024
Department of Retina and Vitreous Services, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Coimbatore, Tamil Nadu, India.
The pupillary direct and consensual reflex is an important non-invasive quick assessment of the neurological state of the eye. Currently, there is no cheap and affordable recording tool for screening and documentation of a relative afferent pupillary defect. We describe how to construct a frugal, do-it-yourself handheld scotopic binocular pupillometer device called Pupilmate.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Engineering Physics, Tsinghua University, Beijing 100084, China.
Broadband upconversion has various applications in solar photovoltaic, infrared and terahertz detection imaging, and biomedicine. The low efficiency of the light-emitting diodes (LEDs) limits the broadband upconversion performance. In this paper, we propose to use surface microstructures to enhance the electroluminescence efficiency (ELE) of LEDs.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
Photofunctional nanomaterials and nanostructures that can emit, manipulate, convert, and utilize photons in diverse forms have profound meanings, from fundamental understandings to applications [...
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!