Design and experimental characterization of Er(3+)-doped fiber amplifiers supporting 6 spatial modes in wavelength division multiplexing regime are reported. The study is first focused on Er(3+)-doped circular ring-structured profiles accessible with conventional fiber manufacturing techniques. However, these fiber designs, optimized for gain equalization, prove to be difficult to obtain experimentally. So as to go beyond these limits, an alternative approach based on a "pixelated" Er(3+)-doped core is proposed. Several possible designs are theoretically investigated and a first fabrication of micro-structured fiber is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.031646 | DOI Listing |
Nanomaterials (Basel)
December 2024
College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
Palladium (Pd) nanocubes, a type of metallic nanostructure, have demonstrated remarkable optoelectronic properties, garnering significant attention. However, their nonlinear optical characteristics and related device applications remain underexplored. In this study, we report the fabrication of a novel saturable absorber (SA) by depositing Pd nanocubes onto a D-shaped fiber (DF).
View Article and Find Full Text PDFMicrosc Res Tech
December 2024
Institute of Photonics and Photon-Technology, Northwest University, Xi'an, China.
Nonlinear multimode imaging is a versatile tool to realize complex structural and compositional information of biological samples. In this study, we presented a novel integrated multimode nonlinear optical microscopy system by using an Er3 + -doped femtosecond fiber laser. The system could perform second harmonic generation (SHG), third harmonic generation (THG), and three-photon fluorescence (3PEF) imaging modes simultaneously.
View Article and Find Full Text PDFModern commercial erbium-doped fibers are limited in their doping concentrations due to the tendency of Er ions to cluster in silicate glasses. Clustering inevitably leads to ion quenching, one major obstacle preventing erbium-doped fibers (EDFs) from scaling to higher laser power near 15XX nm. Here, we present a new, to our knowledge, method for doping erbium into fibers through the use of Er:BaF nanoparticle (NP) precursors.
View Article and Find Full Text PDFIn this paper, high Er concentration erbium doped fiber (EDF) and erbium-ytterbium co-doped fiber (EYDF) were fabricated for the seed and master oscillator power amplifier (MOPA) system of the single-frequency fiber laser. An in-band pumping source with the wavelength of 1535 nm was proposed to improve the efficiency in the ring-cavity. A slope efficiency of 23.
View Article and Find Full Text PDFIn this study, erbium-doped fiber (EDF) and Panda-type polarization maintaining erbium-doped fiber (PM-EDF) were fabricated from the same erbium-doped preform. The intrinsic influence of stress induced by the Panda-type design on the optical properties was investigated. A local structural model of EDF was developed to simulate the introduction of stress by varying the length of non-bridging oxygen (NBO) bonds between erbium ions (Er) and the silica network, providing theoretical insights.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!