We report the direct microscopic observation of optical energy transfer from guided photonic modes in an indium tin oxide (ITO) thin film to surface plasmon polaritons (SPP) at the surfaces of a single crystalline gold platelet. The photonic and SPP modes appear as an interference pattern in the photoelectron emission yield across the surface of the specimen. We explore the momentum match between the photonic and SPP modes in terms of simple waveguide theory and the three-layer slab model for bound SPP modes of thin metal films. We show that because the gold is thin (30-40 nm), two SPP modes exist and that momentum of the spatially confined asymmetric field mode coincides with the dominant mode of the ITO waveguide. The results demonstrate that photoemission electron microscopy (PEEM) can be an important tool for the observation of photonic to SPP interactions in the study of integrated photonic circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.030507 | DOI Listing |
Nano Lett
January 2025
School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
Hybrid nonlinear plasmonic waveguides, characterized by a small mode area and large nonlinear susceptibility, present an intriguing and practical platform for the minimization of nonlinear photonic devices. Nevertheless, the intrinsic Ohmic loss associated with surface plasmon polaritons (SPPs) and modal dispersion imposes constraints on the effective interaction length and, consequently, the ultimate efficiency of nonlinear processes. In this study, we demonstrate an efficient second harmonic generation (SHG) within a hybrid plasmonic waveguide by leveraging SPP-like modes at the fundamental wave and photonic-like modes at the SHG under phase matching conditions.
View Article and Find Full Text PDFNanoscale Adv
January 2025
School of Electrical Engineering and Computer Science, University of Ottawa Ottawa Ontario K1N 6N5 Canada
Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Departamento de Ecologia, IBRAG, Universidade do Estado do Rio de Janeiro, Rua Francisco Xavier 524, PHLC, Sala 220, Rio de Janeiro 20559-900, RJ, Brazil.
When a species is introduced in a new location, it is common for it to establish itself when it finds favorable conditions in the receptor community with regard to interspecific interactions with native species. The azooxanthellate corals coccinea and are invasive species introduced in the Caribbean Sea, the Gulf of Mexico, and the Brazilian Southwest Atlantic. They are successful competitors for space, have multiple reproductive modes, and have high larval dispersion and recruitment, but studies on food and trophic relationships of the genus are still scarce.
View Article and Find Full Text PDFPhytomedicine
January 2025
Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, CIRM Laboratoire de Pharmacognosie CHU B36 Av Hopital 1, Liege B36 4000, Belgium. Electronic address:
Background: Artemisia spp. have been used for millennia in traditional medicine to treat a variety of ailments, including malaria. Extracts of Artemisia afra and A.
View Article and Find Full Text PDFNanophotonics
November 2024
Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
Optical interconnects, leveraging surface plasmon modes, are revolutionizing high-performance computing and AI, overcoming the limitations of electrical interconnects in speed, energy efficiency, and miniaturization. These nanoscale photonic circuits integrate on-chip light manipulation and signal conversion, marking significant advancements in optoelectronics and data processing efficiency. Here, we present a novel plasmonic interconnect circuit, by introducing refractive index matching layer, the device supports both pure SPP and different hybrid modes, allowing selective excitation and transmission based on light wavelength and polarization, followed by photocurrent conversion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!