Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
All-reflective interferometer configurations have been proposed for the next generation of gravitational wave detectors, with diffractive elements replacing transmissive optics. However, an additional phase noise creates more stringent conditions for alignment stability. A framework for alignment stability with the use of diffractive elements was required using a Gaussian model. We successfully create such a framework involving modal decomposition to replicate small displacements of the beam (or grating) and show that the modal model does not contain the phase changes seen in an otherwise geometric planewave approach. The modal decomposition description is justified by verifying experimentally that the phase of a diffracted Gaussian beam is independent of the beam shape, achieved by comparing the phase change between a zero-order and first-order mode beam. To interpret our findings we employ a rigorous time-domain simulation to demonstrate that the phase changes resulting from a modal decomposition are correct, provided that the coordinate system which measures the phase is moved simultaneously with the effective beam displacement. This indeed corresponds to the phase change observed in the geometric planewave model. The change in the coordinate system does not instinctively occur within the analytical framework, and therefore requires either a manual change in the coordinate system or an addition of the geometric planewave phase factor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.029578 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!