A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interferometer phase noise due to beam misalignment on diffraction gratings. | LitMetric

All-reflective interferometer configurations have been proposed for the next generation of gravitational wave detectors, with diffractive elements replacing transmissive optics. However, an additional phase noise creates more stringent conditions for alignment stability. A framework for alignment stability with the use of diffractive elements was required using a Gaussian model. We successfully create such a framework involving modal decomposition to replicate small displacements of the beam (or grating) and show that the modal model does not contain the phase changes seen in an otherwise geometric planewave approach. The modal decomposition description is justified by verifying experimentally that the phase of a diffracted Gaussian beam is independent of the beam shape, achieved by comparing the phase change between a zero-order and first-order mode beam. To interpret our findings we employ a rigorous time-domain simulation to demonstrate that the phase changes resulting from a modal decomposition are correct, provided that the coordinate system which measures the phase is moved simultaneously with the effective beam displacement. This indeed corresponds to the phase change observed in the geometric planewave model. The change in the coordinate system does not instinctively occur within the analytical framework, and therefore requires either a manual change in the coordinate system or an addition of the geometric planewave phase factor.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.029578DOI Listing

Publication Analysis

Top Keywords

modal decomposition
12
geometric planewave
12
coordinate system
12
phase noise
8
diffractive elements
8
phase
8
alignment stability
8
phase changes
8
phase change
8
change coordinate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!