In this letter, we propose a novel configuration for generating multiwavelength Brillouin-Raman fiber laser (MBRFL). The spectral reshaping effect introduced by Rayleigh scattering in a 50 km single mode fiber unifies the generated Brillouin comb in terms of both power level and linewidth. As a consequence, we are able to obtain a 40 nm flat-amplitude MBRFL with wide bandwidth from 1557 nm to 1597 nm covering >500 Stokes lines. This is, to the best of our knowledge, the widest flat-amplitude bandwidth of MBRFL with uniform Stokes combs using just a single Raman pump laser. The channel-spacing is 0.08 nm and the measured OSNR is higher than 12.5 dB. We also demonstrate that the output spectrum of the MBRFL is nearly unaffected over 14 dB range of Brillouin pumping power.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.029358DOI Listing

Publication Analysis

Top Keywords

multiwavelength brillouin-raman
8
brillouin-raman fiber
8
fiber laser
8
spectral reshaping
8
rayleigh scattering
8
broadband flat-amplitude
4
flat-amplitude multiwavelength
4
laser spectral
4
reshaping rayleigh
4
scattering letter
4

Similar Publications

We propose and demonstrate a 10 GHz spacing multi-wavelength Brillouin-Raman fiber laser (MBRFL) with wide bandwidth and an outstanding optical signal-to-noise ratio (OSNR). This is achieved by utilizing loop mirror at one end of the laser cavity through a symmetrical bi-directional Raman pumping scheme. The setup is arranged in a double pass configuration by employing different lengths of dispersion compensating fibers (DCF).

View Article and Find Full Text PDF

We purpose and demonstrate the switchable multi-wavelength Brillouin-Raman fiber laser (MBRFL) through a bi-directional Raman pumping scheme. The laser structure is arranged in a linear cavity by including a physical mirror at one side of the cavity. The switching operation for MBRFL with single- and double-wavelength spacing is implemented by optimizing the Raman power distribution through a variable optical coupler.

View Article and Find Full Text PDF

Multiwavelength Brillouin-Raman fiber laser (MBRFL) features broadband multiwavelength generation with flat-amplitude and high optical signal to noise ratio (OSNR), which has great potential in optical fiber communication applications. Till now, the spectral regions of MBRFLs are mostly concentrated at conventional C- and L-band and the tunability of MBRFL is limited by using the Raman pump with fixed wavelength. Here, by utilizing wavelength-agile random fiber laser which can emit tunable lasing at 1.

View Article and Find Full Text PDF

A simple high flat amplitude multi-wavelength Brillouin-Raman fibre laser (MBRFL) with 10 GHz spacing and excellent optical signal-to-noise ratio (OSNR) in C-Band spectral region is demonstrated. The laser consists of a linear cavity in which 12 km dispersion compensating fiber (DCF) in addition to 49 cm Bismuth-oxide Erbium doped fiber (Bi-EDF) are employed as a gain medium for amplification. The impact of Raman pump power distribution through changes in coupling ratio on amplitude flatness is carried out by comparing the peak power discrepancy between odd- and even-order Brillouin Stoke lines.

View Article and Find Full Text PDF

Brillouin-shift (B-S) fluctuations in multiwavelength Brillouin Raman erbium-doped fiber laser generation are investigated to obtain a probability distribution of acoustic-phonon speeds in the crystal lattice of a dispersion-compensating fiber (DCF) in a linear cavity. Even though the available B-S line spacing can be at 0.076 and 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!