A linearly-polarized, high peak power, short-pulse, Q-switching Yb-doped large-mode-area photonic crystal fiber (PCF) oscillator with three-level system operation is demonstrated. By optimizing cavity parameters and adopting linear polarization component, the laser can easily obtain linearly-polarized output over 2 W at 978 nm with polarization extinction ratio (PER) up to 43 dB without any additional wavelength filter. Less than 50 ns stable output pulses are achieved within repetition range of 10 kHz-200 kHz and short pulse of 9 ns pulse duration, 130 kW peak power at 10 kHz can be reached. The characteristics and the key issues of the laser, such as interpulse ASE, spectrum ASE around 1030 nm, are with detailed discussion in the paper.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.029249DOI Listing

Publication Analysis

Top Keywords

photonic crystal
8
crystal fiber
8
peak power
8
linearly-polarized short-pulse
4
short-pulse aom
4
aom q-switched
4
q-switched 978
4
978 photonic
4
fiber laser
4
laser linearly-polarized
4

Similar Publications

Experimental realization of valley vortex states in water wave crystals.

Sci Bull (Beijing)

January 2025

Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Hangzhou 310058, China. Electronic address:

View Article and Find Full Text PDF

Photoassisted lithium-sulfur (Li-S) batteries offer a promising approach to enhance the catalytic transformation kinetics of polysulfide. However, the development is greatly hindered by inadequate photo absorption and severe photoexcited carriers recombination. Herein, a photonic crystal sulfide heterojunction structure is designed as a bifunctional electrode scaffold for photoassisted Li-S batteries.

View Article and Find Full Text PDF

Block copolymer (BCP) microparticles, which exhibit rapid change of morphology and physicochemical property in response to external stimuli, represent a promising avenue for the development of programmable smart materials. Among the methods available for generating BCP microparticles with adjustable morphologies, the confined assembly of BCPs within emulsions has emerged as a particularly facile and versatile approach. This review provides a comprehensive overview of the role of responsive surfactants in modulating interfacial interactions at the oil-water interface, which facilitates controlled BCP microparticle morphology.

View Article and Find Full Text PDF

Development of Molecularly Imprinted Photonic Crystals Sensor for High-Sensitivity, Rapid Detection of Sulfamethazine in Food Samples.

Polymers (Basel)

January 2025

Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

As a veterinary drug, sulfamethazine is frequently used to control animal diseases. In this study, a novel molecularly imprinted photonic crystal sensor for the fast visual detection of sulfamethazine in milk and chicken has been developed. Under optimum preparation conditions, a molecularly imprinted, photonic crystal with an anti-opal structure and a clear bright color was prepared and characterized.

View Article and Find Full Text PDF

Integrated Spectral Sensitivity as Physics-Based Figure of Merit for Spectral Transducers in Optical Sensing.

Sensors (Basel)

January 2025

Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

The design of optical sensors aims at providing, among other things, the highest precision in the determination of the target measurand. Many sensor systems rely on a spectral transducer to map changes in the measurand into spectral shifts of a resonance peak in the reflection or transmission spectrum, which is measured by a readout device (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!