AI Article Synopsis

  • - The study discusses a new method for analyzing microscopic particles through angular light scattering, which relies on the size and shape of these particles, a technique commonly used in advanced flow cytometry for classifying particles.
  • - The proposed method utilizes a unique wavelength-to-angle mapping, allowing for a broad measurement range of the scattered light without the need for mechanical scanning, thus enabling quick and more accurate assessments of particle morphology.
  • - Experimental results show that this technique can effectively distinguish between differently sized polystyrene beads and can be combined with time-stretch dispersive Fourier transform for real-time, high-speed measurements, making it a promising addition to standard flow cytometers.

Article Abstract

The angular light scattering profile of microscopic particles significantly depends on their morphological parameters, such as size and shape. This dependency is widely used in state-of-the-art flow cytometry methods for particle classification. We introduce a new spectrally encoded angular light scattering method, with potential application in scanning flow cytometry. We show that a one-to-one wavelength-to-angle mapping enables the measurement of the angular dependence of scattered light from microscopic particles over a wide dynamic range. Improvement in dynamic range is obtained by equalizing the angular dependence of scattering via wavelength equalization. Continuous angular spectrum is obtained without mechanical scanning enabling single-shot measurement. Using this information, particle morphology can be determined with improved accuracy. We derive and experimentally verify an analytic wavelength-to-angle mapping model, facilitating rapid data processing. As a proof of concept, we demonstrate the method's capability of distinguishing differently sized polystyrene beads. The combination of this technique with time-stretch dispersive Fourier transform offers real-time and high-throughput (high frame rate) measurements and renders the method suitable for integration in standard flow cytometers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.028960DOI Listing

Publication Analysis

Top Keywords

angular light
12
light scattering
12
spectrally encoded
8
encoded angular
8
microscopic particles
8
flow cytometry
8
wavelength-to-angle mapping
8
angular dependence
8
dynamic range
8
angular
6

Similar Publications

Topologically Engineered High- Quasi-BIC Metasurfaces for Enhanced Near-Infrared Emission in PbS Quantum Dots.

Nano Lett

January 2025

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China.

Enhancing photoluminescence (PL) efficiency in colloidal quantum dots is pivotal for next-generation near-infrared photodetectors, imaging systems, and photonic devices. Conventional methods, especially metal-based plasmonic structures, suffer from large optical losses, which limits their practical use. Here, we introduce a quasi-bound state in the continuum (quasi-BIC) metasurface on a silicon-on-insulator platform, tailored to provide high-quality factor resonances with minimized losses.

View Article and Find Full Text PDF

The spin angular momentum (SAM) plays a significant role in light-matter interactions. It is well known that light carrying SAM can exert optical torques on micro-objects and drive rotations, but 3D rotation around an arbitrary axis remains challenging. Here, we demonstrate full control of the 3D optical torque acting on a trapped microparticle by tailoring the vectorial SAM transfer.

View Article and Find Full Text PDF

Achieving highly tailored control over both the spatial and temporal evolution of light's orbital angular momentum (OAM) on ultrafast timescales remains a critical challenge in photonics. Here, we introduce a method to modulate the OAM of light on a femtosecond scale by engineering a space-time coupling in ultrashort pulses. By linking azimuthal position with time, we implement an azimuthally varying Fourier transformation to dynamically alter light's spatial distribution in a fixed transverse plane.

View Article and Find Full Text PDF

Diffraction imaging of cells allows rapid phenotyping by the response of intracellular molecules to coherent illumination. However, its ability to distinguish numerous types of human leukocytes remains to be investigated. Here, we show that accurate classification of three lymphocyte subtypes can be achieved with features extracted from cross-polarized diffraction image (p-DI) pairs.

View Article and Find Full Text PDF

Anion photoelectron velocity-map imaging using a tunable laser at a 100 kHz repetition rate.

J Chem Phys

January 2025

Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

We present velocity-map imaging (VMI) of photoelectrons detached from anions using an optical parametric amplifier operating at a repetition rate as high as 100 kHz. The light source generates femtosecond (fs) laser pulses tunable from near-infrared to ultraviolet (310-2600 nm), which interact synchronously with mass-selected anion bunches. We demonstrate this technique by measuring two-dimensional projections of photoelectrons ejected from silver trimer anions, Ag3-, across a photon energy range from 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!