We experimentally demonstrate that both of the two output light pulses of different wavelengths from a wavelength converter with various branching ratios preserve phase information of an input light at a single-photon level. In our experiment, we converted temporally-separated two coherent light pulses with average photon numbers of ∼ 0.1 at 780 nm to light pulses at 1522 nm by using difference-frequency generation in a periodically-poled lithium niobate waveguide. We observed an interference between temporally-separated two modes for both the converted and the unconverted light pulses at various values of the conversion efficiency. We observed interference visibilities greater than 0.88 without suppressing the background noises for any value of the conversion efficiency the wavelength converter achieves. At a conversion efficiency of ∼ 0.5, the observed visibilities are 0.98 for the unconverted light and 0.99 for the converted light. Such a phase-preserving wavelength converter with high visibilities will be useful for manipulating quantum states encoded in the frequency degrees of freedom.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.027865DOI Listing

Publication Analysis

Top Keywords

light pulses
20
wavelength converter
16
conversion efficiency
12
light
9
output light
8
phase input
8
input light
8
light single-photon
8
single-photon level
8
observed interference
8

Similar Publications

Fabrication of hierarchical sapphire nanostructures using ultrafast laser induced morphology change.

Nanotechnology

January 2025

Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas, 78712-1139, UNITED STATES.

Sapphire is an attractive material in photonic, optoelectronic, and transparent ceramic applications that stand to benefit from surface functionalization effects stemming from micro/nanostructures. Here we investigate the use of ultrafast lasers for fabricating nanostructures in sapphire by exploring the relationship between irradiation parameters, morphology change, and selective etching. In this approach an ultrafast laser pulse is focused on the sapphire substrate to change the crystalline morphology to amorphous or polycrystalline, which is characterized by examining different vibrational modes using Raman spectroscopy.

View Article and Find Full Text PDF

Background: Fulminant myocarditis (FM) is a potentially lethal disease with a wide spectrum of clinical presentation, thus making the diagnosis hard to depict. In cases where acute circulatory failure occurs venoarterial (VA) extracorporeal membrane oxygenation (ECMO) support is a valid management strategy, especially in the pediatric and adult patients. This study aims to report the results of VA ECMO for FM in our Institution.

View Article and Find Full Text PDF

Purpose: Exercise-induced heat acclimation can mitigate age-related reductions in heat-loss capacity, though performing repeated bouts of strenuous exercise in the heat may be untenable for many older adults. While short-term passive heat acclimation (e.g.

View Article and Find Full Text PDF

Polariton lattices as binarized neuromorphic networks.

Light Sci Appl

January 2025

Spin-Optics laboratory, St. Petersburg State University, St. Petersburg, 198504, Russia.

We introduce a novel neuromorphic network architecture based on a lattice of exciton-polariton condensates, intricately interconnected and energized through nonresonant optical pumping. The network employs a binary framework, where each neuron, facilitated by the spatial coherence of pairwise coupled condensates, performs binary operations. This coherence, emerging from the ballistic propagation of polaritons, ensures efficient, network-wide communication.

View Article and Find Full Text PDF

Acute myocardial infarction-related cardiogenic shock (AMI-CS) is a severe, life-threatening condition characterised by inadequate tissue perfusion due to the heart's inability to pump blood effectively. The pathophysiology of AMI-CS usually arises from the sudden loss of myocardial contractility, leading to a decrease in cardiac output and systemic hypoperfusion. In approximately 90% of AMI-CS cases, the left ventricle is the primary site of dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!