Efficient nanofocusing of light into a gap plasmon waveguide using three-dimensional mode conversion in a strip plasmonic directional coupler is proposed. Unlike conventional nanofocusing using tapering structures, a plasmonic directional coupler converts E(z)-type odd mode energy into E(y)-type gap plasmon mode by controlling phase mismatch and gap spacing. The simulation result shows the maximum electric field intensity increases up to 58.1 times the input intensity, and 17.3% of the light is focused on the nano gap region.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.027816DOI Listing

Publication Analysis

Top Keywords

nanofocusing light
8
mode conversion
8
gap plasmon
8
plasmonic directional
8
directional coupler
8
light three-dimensional
4
three-dimensional plasmonic
4
mode
4
plasmonic mode
4
conversion efficient
4

Similar Publications

Plasmonic-nanowire near-field beam analyzer.

Nanophotonics

March 2024

Laboratory of Integrated Opto-Mechanics and Electronics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

Article Synopsis
  • Experimental near-field analysis of output beams from micro/nano-waveguides is crucial for designing nanophotonic devices, yet it hasn’t been demonstrated until now.
  • The study introduces a plasmonic-nanowire beam analyzer using a single Au nanowire to scan near-field distributions, achieving a resolution of 190 nm and a collection efficiency of about 47.4%.
  • This novel approach enables the first 3D characterization of spatial distributions from a metal nanowire output beam and showcases the ability to analyze complex multimodes in large nanoribbons, indicating potential applications in nanolasers and biosensing.
View Article and Find Full Text PDF

In this study, we fabricate and characterize amphiphilic anodic aluminum oxide (AAO) membranes using UV-triggered thiol-yne click reactions and photomasks for various innovative applications, including driven polymer nanopatterns, anti-counterfeiting, and conductive pathways. Specifically, we synthesize 10-undecynyl-terminated-AAO membranes and subsequently prepare amphiphilic AAO membranes with superhydrophilic and superhydrophobic regions. Various analytical methods, including grazing angle X-ray photoelectron spectroscopy (GIXPS), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), nanofocused synchrotron X-ray techniques (nano-XRD and nano-XRF), and water contact angle measurements, confirm the modifications and distinct properties of the modified areas.

View Article and Find Full Text PDF

In the deep-sea environment, the volume available for an in-situ gene sequencer is severely limited. In addition, optical imaging systems are subject to real-time, large-scale defocusing problems caused by ambient temperature fluctuations and vibrational perturbations. To address these challenges, we propose an edge detection algorithm for defocused images based on grayscale gradients and establish a defocus state detection model with nanometer resolution capabilities by relying on the inherent critical illumination light field.

View Article and Find Full Text PDF

Over the last years metal halide perovskites have demonstrated remarkable potential for integration in light emitting devices. Heterostructures allow for tunable bandgap depending on the local anion composition, crucial for optoelectronic devices, but local structural effects of anion exchange in single crystals is not fully understood. Here, we investigate how the anion exchange of CsPbBrnanowires fully and locally exposed to HCl vapor affects the local crystal structure, using nanofocused x-rays.

View Article and Find Full Text PDF

Erucamide is known to play a critical role in modifying polymer fiber surface chemistry and morphology. However, its effects on fiber crystallinity and mechanical properties remain to be understood. Here, synchrotron nanofocused X-ray Diffraction (nXRD) revealed a bimodal orientation of the constituent polymer chains aligned along the fiber axis and cross-section, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!