Large-aperture deposition of high-laser-damage-threshold, low-dispersion optical coatings for 15 femtosecond pulses have been developed using plasma-ion-assisted electron-beam evaporation. Coatings are demonstrated over 10 in. aperture substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.53.00A221DOI Listing

Publication Analysis

Top Keywords

coatings femtosecond
8
plasma-ion-assisted coatings
4
femtosecond laser
4
laser systems
4
systems large-aperture
4
large-aperture deposition
4
deposition high-laser-damage-threshold
4
high-laser-damage-threshold low-dispersion
4
low-dispersion optical
4
optical coatings
4

Similar Publications

Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate.

View Article and Find Full Text PDF

Modern photonic devices demand low-cost, scalable methods for creating periodic patterns over diverse surfaces including nonplanar and tipped ones, the examples of which can be readily found in fiber optics. Laser-induced periodic surface structures (LIPSS) offer an attractive route for fabricating such patterns in a single-step straightforward procedure, where the temporal and spatial locality of the self-interference effects ensure robustness against variations of the laser processing parameters. In this work, we show the LIPSS-assisted oxidation of thin titanium films by near-IR femtosecond laser pulses as a promising technology for the production of regular gratings consisting of rutile ridges.

View Article and Find Full Text PDF

Large Range Curvature Measurement Using FBGs in Two-Core Fiber with Protective Coating.

Micromachines (Basel)

October 2024

Department of Electromagnetism and Telecommunication, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium.

Article Synopsis
  • A fiber Bragg grating (FBG)-based sensor has been developed for measuring curvature using specialty optical fibers with gratings inscribed via femtosecond laser technology.
  • The sensor utilizes two different gratings located in asymmetrical positions (one in the central core and one in the eccentric core) to analyze bending characteristics, achieving a sensitivity of 58 pm/m-1 over a curvature range from 0 to 50 m-1.
  • This design minimizes temperature and humidity effects by comparing peak shifts between the two gratings, making it robust and suitable for engineering applications in curvature sensing.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers created SiC nanoparticles coated with graphene oxide through femtosecond laser ablation in water, revealing unique structural features and silicene sheet micro-nanostructures in the solution.
  • * The surfaces of the SiC showed high spatial frequency laser-induced periodic surface structures (LIPSS) with size variations linked to the resistivity of the SiC materials used.
  • * The study explored the properties of annealed Au-deposited LIPSS for sensing applications, finding that rapid thermal annealing significantly enhanced surface-based detection of explosives like Tetryl through surface-enhanced Raman scattering (SERS).*
View Article and Find Full Text PDF
Article Synopsis
  • A dual-peak long period fiber grating (DP-LPFG) sensor was created for accurately detecting riboflavin concentration using advanced laser techniques on silica fiber.
  • Silica-based coatings mixed with β-cyclodextrin were applied to enhance sensing, with optimal thickness identified at about 540 nm for the best performance.
  • The sensor achieved a detection limit of 0.08 nM, responded in under 3 minutes, and demonstrated high sensitivity and reliability, suggesting its potential use in medical diagnostics and food safety.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!