We experimentally observed three types of pulses generated in an erbium-doped fiber laser by incorporating a homemade graphene saturable absorber (GSA). The generated pulses from the laser oscillator include dual-wavelength dark pulses, fundamentally step-like pulses, and non-soliton second-harmonic pulses. These operation regimes are first reported by using graphene as the saturable absorber. Our results will further indicate that the GSA can function well for obtaining various ultrafast pulse phenomena, highlighting the practical potential of graphene in ultrafast photonics technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.52.008465DOI Listing

Publication Analysis

Top Keywords

graphene saturable
12
saturable absorber
12
three types
8
types pulses
8
erbium-doped fiber
8
fiber laser
8
laser incorporating
8
pulses
6
observations three
4
pulses erbium-doped
4

Similar Publications

Terahertz Saturable Absorption across Charge Separation in Photoexcited Monolayer Graphene/MoS Heterostructure.

J Phys Chem Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.

Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.

View Article and Find Full Text PDF

In research and engineering, short laser pulses are fundamental for metrology and communication. The generation of pulses by passive mode-locking is especially desirable due to the compact setup dimensions, without the need for active modulation requiring dedicated external circuitry. However, well-established models do not cover regular self-pulsing in gain media that recover faster than the cavity round trip time.

View Article and Find Full Text PDF

In the present work, the ultrafast nonlinear optical (NLO) response of some molybdenum disulfide (MoS), fluorinated graphene (FG), and FG/MoS heterostructure thin films was studied using the -scan and optical Kerr effect techniques employing femtosecond laser pulses at different excitation wavelengths (i.e., 400, 570, 610, 660, 800, and 1200 nm).

View Article and Find Full Text PDF

We report passively Q-switched pulse operation through an erbium-doped fiber laser (EDFL) utilizing graphene oxide/titania (GO/TiO) nanorods as a saturable absorber. The GO/TiO nanorods were fabricated using a Sol-gel-assisted hydrothermal method. The optical and physical characterization of the GO/TiO was then characterized using a field-emission-scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and diffuses reflectance spectroscopy (DRS).

View Article and Find Full Text PDF

Ultrafast Charge Transfer-Induced Unusual Nonlinear Optical Response in ReSe/ReS Heterostructure.

ACS Nano

November 2024

Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China.

Ultrafast charge transfer in van der Waals heterostructures can effectively engineer the optical and electrical properties of two-dimensional semiconductors for designing photonic and optoelectronic devices. However, the nonlinear absorption conversion dynamics with the pump intensity and the underlying physical mechanisms in a type-II heterostructure remain largely unexplored, yet hold considerable potential for all-optical logic gates. Herein, two-dimensional ReSe/ReS heterostructure is designed to realize an unusual transition from reverse saturable absorption to saturable absorption (SA) with a conversion pump intensity threshold of approximately 170 GW/cm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!