Francisella tularensis intracellular survival: to eat or to die.

Microbes Infect

Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, 96 rue Didot, 75993 Paris Cedex 14, France; INSERM, U1002, UnitÈ de PathogÈnie des Infections SystÈmiques, Paris, France. Electronic address:

Published: December 2013

Francisella tularensis is a highly infectious facultative intracellular bacterium causing the zoonotic disease tularemia. Numerous attributes required for F. tularensis intracellular multiplication have been identified recently. However, the mechanisms by which the majority of them interfere with the infected host are still poorly understood. The following review summarizes our current knowledge on the different steps of Francisella intramacrophagic life cycle and expands on the importance of nutrient acquisition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micinf.2013.09.009DOI Listing

Publication Analysis

Top Keywords

francisella tularensis
8
tularensis intracellular
8
intracellular survival
4
survival eat
4
eat die
4
die francisella
4
tularensis highly
4
highly infectious
4
infectious facultative
4
facultative intracellular
4

Similar Publications

Unlabelled: is one of the most virulent bacterial pathogens known and causes the disease tularemia, which can be fatal if untreated. This zoonotic and intracellular pathogen is exposed to diverse environmental and host stress factors that require an appropriate response to survive. However, the stress tolerance mechanisms used by to persist are not fully understood.

View Article and Find Full Text PDF

Background: Francisella tularensis is an aerobic, gram negative coccobacillus bacterium that causes tularemia. F. tularensis spreads primarily through ticks, biting flies, droplet inhalation, contaminated mud or water, or infected animal bites, and it can survive in animal carcasses with the most common mode of transmission occurring via inoculation into the skin and inhalation/ingestion.

View Article and Find Full Text PDF

Detection of Francisellaceae and the differentiation of main European F. tularensis ssp. holarctica strains (Clades) by new designed qPCR assays.

BMC Microbiol

January 2025

Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.

Background: The zoonotic and highly infectious pathogen Francisella tularensis is the etiological agent of tularemia. Tularemia in humans is mainly caused by F. tularensis subspecies tularensis and holarctica, but Francisella species like F.

View Article and Find Full Text PDF

The development of safe and effective mucosal vaccines are hampered by safety concerns associated with adjuvants or live attenuated microbes. We previously demonstrated that targeting antigens to the human-Fc-gamma-receptor-I (hFcγRI) eliminates the need for adjuvants, thereby mitigating safety concerns associated with the mucosal delivery of adjuvant formulated vaccines. Here we evaluated the role of the route of immunization in the mucosal immunity elicited by the hFcγRI-targeted vaccine approach.

View Article and Find Full Text PDF

Background: Point of need diagnostics provide efficient testing capability for remote or austere locations, decreasing the time to answer by minimizing travel or sample transport requirements. Loop-mediated isothermal amplification (LAMP) is an appealing technology for point-of-need diagnostics due to its rapid analysis time and minimal instrumentation requirements.

Methods: Here, we designed and optimized nine LAMP assays that are sensitive and specific to targeted bacterial select agents including Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Brucella spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!