Metalloenzyme design and engineering through strategic modifications of native protein scaffolds.

Curr Opin Chem Biol

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States. Electronic address:

Published: April 2014

Metalloenzymes are among the major targets of protein design and engineering efforts aimed at attaining novel and efficient catalysis for biochemical transformation and biomedical applications, due to the diversity of functions imparted by the metallo-cofactors along with the versatility of the protein environment. Naturally evolved protein scaffolds can often serve as robust foundations for sustaining artificial active sites constructed by rational design, directed evolution, or a combination of the two strategies. Accumulated knowledge of structure-function relationship and advancement of tools such as computational algorithms and unnatural amino acids incorporation all contribute to the design of better metalloenzymes with catalytic properties approaching the needs of practical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4008701PMC
http://dx.doi.org/10.1016/j.cbpa.2014.01.006DOI Listing

Publication Analysis

Top Keywords

design engineering
8
protein scaffolds
8
metalloenzyme design
4
engineering strategic
4
strategic modifications
4
modifications native
4
protein
4
native protein
4
scaffolds metalloenzymes
4
metalloenzymes major
4

Similar Publications

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Electrochemical nitrate reduction (NORR) to ammonia presents a promising alternative strategy to the traditional Haber-Bosch process. However, the competitive hydrogen evolution reaction (HER) reduces the Faradaic efficiency toward ammonia, while the oxygen evolution reaction (OER) increases the energy consumption. This study designs IrCu alloy nanoparticles as a bifunctional catalyst to achieve efficient NORR and OER while suppressing the unwanted HER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!