When mitochondria become deenergized, futile ATP hydrolysis is prevented by reversible binding of an endogenous inhibitory peptide called IF1 to ATP synthase. Between initial IF1 binding and IF1 locking the enzyme experiences large conformational changes. While structural studies give access to analysis of the dead-end inhibited state, transient states have thus far not been described. Here, we studied both initial and final states by reporting, for the first time, the consequences of mutations of Saccharomyces cerevisiae ATP synthase on its inhibition by IF1. Kinetic studies allowed the identification of amino acids or motifs of the enzyme that are involved in recognition and/or locking of IF1 α-helical midpart. This led to an outline of IF1 binding process. In the recognition step, protruding parts of α and especially β subunits grasp IF1, most likely by a few residues of its α-helical midpart. Locking IF1 within the αβ interface involves additional residues of both subunits. Interactions of the α and β subunits with the foot of the γ subunit might contribute to locking and stabilizing of the dead-end state.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2014.01.023DOI Listing

Publication Analysis

Top Keywords

atp synthase
12
if1
9
inhibitory peptide
8
if1 binding
8
locking if1
8
α-helical midpart
8
locking
5
interactions involved
4
involved grasping
4
grasping locking
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!