Adipocytes are continuously stimulated by proinflammatory cytokines such as TNFα, which cause adipocyte dysfunction by facilitating the inflammatory response. Although miR-130 was reported to be an important regulator of adipogenesis by targeting PPARγ mRNA, little is known about the mechanisms regulating miR-130 expression during the proinflammatory response. Here, we examined miR-130 levels in white adipose tissue (WAT) from high-fat diet (HFD) mice and TNFα-stimulated adipocytes. Primary transcripts of miR-130 were increased after TNFα stimulation, indicating that induction of miR-130 during the pro-inflammatory response is regulated by a transcriptional event. A chromatin immunoprecipitation assay showed that p65 binding to the promoter regions of miR-130 was enhanced after TNFα treatment. Taken together, our findings suggest that induction of miR-130 by TNFα is responsible for adipocyte dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2013.10.018 | DOI Listing |
Nutrients
December 2024
Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea.
Background/objectives: Functional probiotics, particularly subsp. CKDB001, have shown potential as a therapeutic option for metabolic dysfunction-associated steatotic liver disease (MASLD). However, their effects have not been confirmed in in vivo systems.
View Article and Find Full Text PDFMolecules
December 2024
Department of Clinical Experimental Science and Odontostomatology, Research Center of Health Education and Health Promotion and Research Center of Obesity, Polytechnic University of Marche, 60126 Ancona, Italy.
Alterations of plasma lipoprotein levels and oxidative stress are frequently observed in obese patients, including low high-density lipoprotein (HDL) cholesterol (HDL-C) levels and alterations of HDL composition. Dysfunctional HDL with lower antioxidant and anti-inflammatory properties have also been demonstrated in obesity. There is increasing evidence that white adipose tissue (WAT) participates in several metabolic activities and modulates HDL-C levels and function.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
Obesity is a chronic, multifactorial disease characterized by persistent low-grade tissue and systemic inflammation. Fat accumulation in adipose tissue (AT) leads to stress and dysfunctional adipocytes, along with the infiltration of immune cells, which initiates and sustains inflammation. Neutrophils are the first immune cells to infiltrate AT during high-fat diet (HFD)-induced obesity.
View Article and Find Full Text PDFLife (Basel)
December 2024
Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo-UNIFESP, Diadema 09913-030, Brazil.
Background: Chronic low-grade inflammation in obesity is linked to white adipose tissue (WAT) dysfunction. Plasma lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4), triggering NF-κB and worsening these disturbances. Previously, we showed that histone H3 lysine 27 (H3K27) epigenetic modifications affect WAT gene expression in high-fat-diet mice, identifying key pathways in adipose-derived stem cells (ASCs).
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Biochemistry, Microbiology and Physics, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria.
() strains and their postbiotics show potential for managing metabolic disorders such as diabetes and obesity. Two newly isolated strains, M2.1 and P4, were yielded from anthills in Sinite Kamani National Park, Bulgaria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!