AI Article Synopsis

  • The study investigates the role of platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) in the development of brain radiation necrosis (RN) following radiotherapy, suggesting they may contribute to angiogenesis and inflammation.
  • Histopathological analyses of surgical specimens revealed that PDGFs were expressed in various brain cell types, particularly in the perinecrotic area surrounding RN tissue, indicating a localized response to injury.
  • The findings suggest that targeting PDGF-C, PDGF-D, and PDGFR-α could lead to new treatment strategies for managing RN, regardless of the type of tumor or radiation treatment used.

Article Abstract

Background: Brain radiation necrosis (RN) occurring after radiotherapy is a serious complication. We and others have performed several treatments for RN, using anticoagulants, corticosteroids, surgical resection and bevacizumab. However, the mechanisms underlying RN have not yet been completely elucidated. For more than a decade, platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) have been extensively studied in many biological processes. These proteins influence a wide range of biological responses and participate in many normal and pathological conditions. In this study, we demonstrated that PDGF isoforms (PDGF-A, B, C, and D) and PDGFRs (PDGFR-α and β) are involved in the pathogenesis of human brain RN. We speculated on their roles, with a focus on their potential involvement in angiogenesis and inflammation in RN.

Methods: Seven surgical specimens of RN, obtained from 2006 to 2013 at our department, were subjected to histopathological analyses and stained with hematoxylin and eosin. We qualitatively analyzed the protein expression of each isoform of PDGF by immunohistochemistry. We also examined their expression with double immunofluorescence.

Results: All PDGFs were expressed in macrophages, microglia, and endothelial cells in the boundary of the core of RN, namely, the perinecrotic area (PN), as well as in undamaged brain tissue (UB). PDGF-C, D and PDGFR-α were also expressed in reactive astrocytes in PN. PDGFs and PDGFR-α were scarcely detected in UB, but PDGFR-β was specifically expressed in endothelial cells not only in PN but also in UB.

Conclusions: PDGFs/PDGFRs play critical roles in angiogenesis and possibly in inflammation, and they contribute to the pathogenesis of RN, irrespective of the original tumor pathology and applied radiation modality. Treatments for the inhibition of PDGF-C, PDGF-D, and PDGFR-α may provide new approaches for the treatment of RN induced by common radiation therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927833PMC
http://dx.doi.org/10.1186/1748-717X-9-51DOI Listing

Publication Analysis

Top Keywords

platelet-derived growth
8
growth factors
8
brain radiation
8
radiation necrosis
8
angiogenesis inflammation
8
endothelial cells
8
roles platelet-derived
4
factors receptors
4
brain
4
receptors brain
4

Similar Publications

Cysteine-Specific F and NIR Dual Labeling of Peptides via Vinyltetrazine Bioorthogonal Conjugation for Molecular Imaging.

J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu 610041, China.

Radiolabeled peptides are vital for positron emission tomography (PET) imaging, yet the F-labeling peptides remain challenging due to harsh conditions and time-consuming premodification requirements. Herein, we developed a novel vinyltetrazine-mediated bioorthogonal approach for highly efficient F-radiolabeling of a native peptide under mild conditions. This approach enabled radiosynthesis of various tumor-targeting PET tracers, including targeting the neurofibromin receptor (), the integrin αβ (), and the platelet-derived growth factor receptor β (), with a radiochemical yield exceeding 90%.

View Article and Find Full Text PDF

With the ongoing rise in the incidence of inflammatory bowel disease (IBD), its extraintestinal manifestations have garnered significant attention. IBD-related arthritis is notable for its insidious onset and unpredictability, presenting considerable challenges for clinical diagnosis and management. Factors such as gut microbiota, plasma proteins, inflammatory proteins, and biomarkers found in blood and urine may be closely associated with IBD-related arthritis.

View Article and Find Full Text PDF

Pulmonary vascular remodeling and arterial hypertension (PAH) correlate to increased platelet-derived growth factor (PDGF) activity and elevated KIT expression. Imatinib has emerged as a potential therapeutic agent for PAH. The purpose of this systematic review and meta-analysis was to assess the effectiveness of imatinib in treatment of PAH.

View Article and Find Full Text PDF

Platelet-rich plasma (PRP) has gained increasing recognition as a promising therapeutic agent in managing rheumatic diseases. Conventional treatments, including nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying antirheumatic drugs (DMARDs), primarily act on reducing inflammation but fail to address the underlying mechanisms of connective tissue degradation. PRP, an autologous preparation enriched with growth factors and bioactive molecules, is pivotal in modulating inflammation and fostering tissue regeneration.

View Article and Find Full Text PDF

PDGFR-α shRNA-polyplex for uveal melanoma treatment via EMT mediated vasculogenic mimicry interfering.

J Nanobiotechnology

December 2024

National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Up to 50% of individuals with uveal melanoma (UM), a frequent cancer of the eye, pass away from metastases. One of the major challenges in treating UM is the role of receptor tyrosine kinases (RTKs), which mediate the epithelial-mesenchymal transition (EMT) of tumors. RTKs are involved in binding multiple growth factors, leading to angiogenesis and vasculogenic mimicry (VM) phenomena.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!