Unlabelled: Targeted delivery of antiosteoarthritic drug diacerein to articular tissue could be a major achievement and soluble polysaccharide chondroitin sulfate (ChS) may be a suitable agent for this. Therefore, diacerein loaded solid lipid nanoparticles modified with ChS (ChS-DC-SLN) were prepared for synergistic effect of these agents to combat multidimensional pathology of osteoarthritis (OA). Prepared formulation were of size range 396±2.7nm, showed extended release up to 16h and increased bioavailability of diacerein by 2.8 times. ChS-DC-SLN were evaluated for their effect on histopathology of femoro-tibial joint of rat knee and amount of ChS and rhein (an active metabolite of diacerein) at targeted site. Concentration of rhein was significantly higher in case of ChS-DC-SLN (7.8±1.23μg/ml) than that of drug dispersion (2.9±0.45μg/ml). It can be stated that ChS served as homing to articular cartilage for targeting of drug. Thus, ChS-DC-SLN have great potential to enhance the overall efficacy of treatment for OA.
From The Clinical Editor: This study demonstrates the feasibility of targeted delivery of diacerein to articular tissue using soluble polysaccharide chondroitin sulfate as the targeting vector. This approach has the potential to significantly increase anti-arthritic drug concentration in joints without leading to systemic toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2014.01.008 | DOI Listing |
J Neuroinflammation
January 2025
Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan, China.
Background: Intracerebral hemorrhage (ICH) causes prominent deposition of extracellular matrix molecules, particularly the chondroitin sulphate proteoglycan (CSPG) member neurocan. In tissue culture, neurocan impedes the properties of oligodendrocytes. Whether therapeutic reduction of neurocan promotes oligodendrogenesis and functional recovery in ICH is unknown.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Monash Suzhou Research Institute, Monash University, Suzhou, 215000, Jiangsu, China.
Backgrounds: Osteoarthritis (OA) significantly impacts the elderly, leading to disability and decreased quality of life. While hyaluronic acid (HA) and chondroitin sulfate (CS) are recognized for their therapeutic potential in OA, their effects on extracellular matrix (ECM) degradation are not well understood. This study investigates the impact of HA and CS, individually and combined, on ECM degradation in OA and the underlying mechanisms.
View Article and Find Full Text PDFJ Neurosci
January 2025
Institute of Neuroimmunology, Slovak Academy of Science, 84510 Bratislava, Slovakia.
Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China. Electronic address:
Hyaluronic acid (HA) exhibits various biological activities and functions, mainly governed by its molecular weight (M). Traditional HA degradation methods encounter challenges such as environmental pollution and high costs. Thus, developing a safe cell factory with an efficient regulation strategy for one-step production of specific M HA has attracted significant research interest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!