Background: The overexpression of histone deacetylase (HDAC) and a subsequent decrease in the acetylation levels of nuclear histones are frequently observed in cancer cells. Generally it was accepted that the deacetylation of histones suppressed expression of the attached genes. Therefore, it has been suggested that HDAC might contribute to the survival of cancer cells by altering the NKG2D ligands transcripts. By the way, the translational regulation of NKG2D ligands remains unclear in cancer cells. It appears the modulation of this unclear mechanism could enhance NKG2D ligand expressions and the susceptibility of cancer cells to NK cells. Previously, it was reported that irradiation can increase the surface expressions of NKG2D ligands on several cancer cell types without increasing the levels of NKG2D ligand transcripts via ataxia telangiectasia mutated and ataxia telangiectasia and Rad3 related (ATM-ATR) pathway, and suggested that radiation therapy might be used to increase the translation of NKG2D ligands.

Methods: Two NSCLC cell lines, that is, A549 and NCI-H23 cells, were used to investigate the combined effects of ionizing radiation and HDAC inhibitors on the expressions of five NKG2D ligands. The mRNA expressions of the NKG2D ligands were quantitated by multiplex reverse transcription-PCR. Surface protein expressions were measured by flow cytometry, and the susceptibilities of cancer cells to NK cells were assayed by time-resolved fluorometry using the DELFIA® EuTDA cytotoxicity kit and by flow cytometry.

Results: The expressions of NKG2D ligands were found to be regulated at the transcription and translation levels. Ionizing radiation and HDAC inhibitors in combination synergistically increased the expressions of NKG2D ligands. Furthermore, treatment with ATM-ATR inhibitors efficiently blocked the increased translations of NKG2D ligands induced by ionizing radiation but did not block the increased ligand translations induced by HDAC inhibitors. The study confirms that increased NKG2D ligand levels by ionizing radiation and HDAC inhibitors could synergistically enhance the susceptibilities of cancer cells to NK-92 cells.

Conclusions: This study suggests that the expressions of NKG2D ligands are regulated in a complex manner at the multilevel of gene expression, and that their expressions can be induced by combinatorial treatments in lung cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923253PMC
http://dx.doi.org/10.1186/1748-717X-9-49DOI Listing

Publication Analysis

Top Keywords

nkg2d ligands
36
cancer cells
28
expressions nkg2d
24
ionizing radiation
20
hdac inhibitors
16
nkg2d
13
nkg2d ligand
12
radiation hdac
12
cells
10
ligands
9

Similar Publications

Multiple Myeloma Cells Shift the Fate of Cytolytic ILC2s Towards TIGIT-Mediated Cell Death.

Cancers (Basel)

January 2025

Laboratory of Immunology and Biotherapy, Department Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.

Background: Growing evidence attests to the multifaceted roles of group 2 innate lymphoid cells (ILC2s) in cancer immunity. They exhibit either pro- or anticancer activity depending on tumor type but their function in Multiple Myeloma (MM) is still not elucidated.

Methods: The bone marrow (BM) and peripheral blood (PB) of patients (pts) with MM or precancerous conditions were collected, and specific properties of ILC2 subsets were assessed by flow cytometry.

View Article and Find Full Text PDF

Xylooligosaccharide and Akkermansia muciniphila synergistically ameliorate insulin resistance by reshaping gut microbiota, improving intestinal barrier and regulating NKG2D/NKG2DL signaling in gestational diabetes mellitus mice.

Food Res Int

February 2025

Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China. Electronic address:

Xylooligosaccharides (XOS) ameliorate insulin resistance (IR) in gestational diabetes mellitus (GDM) probably by propagating Akkermansia muciniphila (Akk). This study aimed to investigate the effects and mechanisms of XOS, Akk and combination on IR in GDM mice/pseudo-germ-free (PGF) mice. Female mice were fed with AIN-93 (n = 19) and high fat diet (HFD) (n = 206).

View Article and Find Full Text PDF

Amphiphilic Polyaspartamide Derivatives with Cholesterol Introduction Enhanced Ex Vivo mRNA Transfection Efficiency to Natural Killer Cells.

Biomacromolecules

January 2025

Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.

Engineered natural killer (NK) cells eliminate cancer cells by overexpressing a chimeric antigen receptor, producing highly efficient and safe NK cell therapies. This study investigated the polyplex formulation for the fusion protein GreenLantern-natural killer group 2D (NKG2D) mRNA to evaluate its delivery efficacy into NK cells, wherein NKG2D on the surface of NK cells recognized its counterpart NKG2D ligands on cancer cells. Amphiphilic polyaspartamide derivatives Chol-PAsp(DET/CHE) were prepared by adding cyclohexylethylamine (CHE) and diethylenetriamine (DET) in the side chains and cholesterol (Chol) at the α-terminus to enhance endosomal escapability and optimize hydrophobicity.

View Article and Find Full Text PDF

The molecular receptor NKBB enhances the persistence and anti-hepatocellular carcinoma activity of GPC3 CAR-T cells.

Pharmacol Res

January 2025

Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. Electronic address:

Chimeric antigen receptor (CAR) T cells have encouraging results in the treatment of hematological malignancies. However, CAR-T therapy still faces numerous challenges against solid tumors, such as hepatocellular carcinoma (HCC), owing to heterogeneous antigen expression in tumor cells, limited persistence of CAR-T cells, etc. Therefore, to treat HCC more effectively, we connected the molecular receptor NKBB to a second-generation glypican-3 (GPC3) CAR to construct GC3328z-NKBB CAR-T cells, which have double specific targets of GPC3 and NKG2DLs (natural killer group 2, member D ligands), dual co-stimulation of CD28 and 41BB, and a single CD3ζ chain.

View Article and Find Full Text PDF

Cell type-specific upregulation of NKG2D ligand MICA in response to APTO253.

Ann Transl Med

December 2024

Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.

One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!