Human exposure to parabens as a preservative used in personal care products is of increasing concern, as there is evidence from in vivo and in vitro studies of hormone disruption in association with exposure to parabens. Transport across the placenta could be critical for risk assessment, but the available data are sparse. The aim is to develop a method for estimating fetal exposure, via the placenta, to the most commonly-used parabens, by using a human placental perfusion model. The use of human tissue is vital for determining human fetal exposure, because animal studies are of little relevance, since the placenta exhibits significant interspecies variation. An HPLC model is currently being established to simultaneously quantify four different parabens, namely, methylparaben, ethylparaben, propylparaben and butylparaben, and their main metabolite, p-hydroxybenzoic acid. With this model, we aim to determine the transport kinetics of these parabens across the human placenta, and to investigate placental metabolism, including differences in transport due to molecular characteristics. This will facilitate assessment of the risks associated with the use of paraben-containing products during pregnancy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/026119291304100610 | DOI Listing |
J Toxicol Environ Health A
January 2025
Department of Clinical, Forensic, Environmental, and Industrial Toxicology, University Hospital of Liege, Liege, Belgium.
Designing ideal human biomonitoring studies involves the selection of reliable markers of exposure in adequate biological matrix. Besides conventional matrices such as blood or urine, hair has been increasingly investigated as a promising noninvasive alternative. However, understanding the pollutant distribution between differing biological compartments is essential for reliable interpretation of data collected.
View Article and Find Full Text PDFInt J Environ Health Res
January 2025
Office of Human Resources, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Humans are widely exposed to phenols, parabens, and phthalates with health risks, while the effects of these chemicals on biological aging remain unclear. Among 3,441 adults in the National Health and Nutrition Examination Survey 2005-2010, phenol, paraben, and phthalate concentrations were measured and phenotypic age acceleration (PhenoAgeAccel) was calculated. Linear regression and weighted quantile sum (WQS) regression were used to evaluate the associations of single and mixed chemicals with PhenoAgeAccel.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.
View Article and Find Full Text PDFMicrobiome
January 2025
Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.
Rapid Commun Mass Spectrom
April 2025
State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
Rational: People are widely exposed to parabens in their daily life, but parabens are endocrine disrupting chemicals that pose a threat to human health. Therefore, establishing a rapid screening method to enhance monitoring of parabens is necessary. Herein, a covalent organic framework (COF) nanofilm-assisted laser desorption ionization mass spectrometry (LDI-MS) method was established to screen parabens in personal care products (PCPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!