Keap1 is known to mediate the ubiquitination of Nrf2, a master regulator of the antioxidant response. Directly interrupting the Keap1-Nrf2 interaction has been emerged as a promising strategy to develop novel class of antioxidant, antiinflammatory, and anticancer agents. On the basis of the molecular binding determinants analysis of Keap1, we successfully designed and characterized the most potent protein-protein interaction (PPI) inhibitor of Keap1-Nrf2, compound 2, with K(D) value of 3.59 nM binding to Keap1 for the first time to single-digit nanomolar. Compound 2 can effectively disrupt the Nrf2-Keap1 interaction with an EC50 of 28.6 nM in the fluorescence polarization assay. It can also activate the Nrf2 transcription activity in the cell-based ARE-luciferase reporter assay in a dose-dependent manner. The qRT-PCR results of Nrf2 transcription targets gave the consistent results. These results confirm direct and highly efficient interruption of the Keap1-Nrf2 PPI can be fully achieved by small molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm5000529DOI Listing

Publication Analysis

Top Keywords

protein-protein interaction
8
molecular binding
8
binding determinants
8
determinants analysis
8
analysis keap1
8
nrf2 transcription
8
discovery potent
4
keap1-nrf2
4
potent keap1-nrf2
4
keap1-nrf2 protein-protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!