Metal nanoparticle growth represents a major deactivation mechanism of supported catalysts and other functional nanomaterials, particularly those based on low melting-point metals. Here we investigate the impact of the support porous structure on the stability of CuZnO/SiO2 model methanol synthesis catalysts. A series of silica materials with ordered cagelike (SBA-16 mesostructure) and disordered (SiO2-gel) porosities and varying pore sizes were employed as catalyst supports. Nitric oxide moderated nitrate decomposition enabled the synthesis of catalytically active Cu nanoparticles (3-5 nm) exclusively inside the silica pores with short interparticle spacings. Under relevant reactive conditions, confinement of the Cu particles in cagelike silica pores notably enhances catalyst stability by limiting Cu particle growth as compared to catalysts deposited in SiO2-gel host materials with also 3D and highly interconnected though unconstrained porosity. For both pore morphologies, we find a direct relationship between catalyst stability and support porosity, provided the narrowest characteristic pore dimension is employed as a porosity descriptor. For cagelike porosities this corresponds to the size of the entrances to the nanocages. Our results point to nanoparticle diffusion and coalescence as a relevant growth mechanism under reactive conditions and underscore the significance of the narrowest pore constrictions to mitigate growth and improve catalyst stability. This finding contributes to the establishment of general and quantitative structure-stability relationships which are essential for the design of catalysts and related functional nanostructures with long lifetimes under operation conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn406119jDOI Listing

Publication Analysis

Top Keywords

catalyst stability
12
support porosity
8
methanol synthesis
8
synthesis catalysts
8
catalysts functional
8
silica pores
8
reactive conditions
8
stability
5
catalysts
5
quantitative relationship
4

Similar Publications

Comparison of Hydrogen Bonded Organic Framework with Reduced Graphene Oxide-Pd Based Nanocatalyst: Which One Is More Efficient for Entrapment of Nitrophenol Pollutants?

Langmuir

January 2025

Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran.

In this study, a Pd nanoparticles@hydrogen-bonded organic framework (Pd NPs@HOF) thin film was fabricated at the toluene-water interface. The HOF was formed through the interaction of trimesic acid (TMA) and melamine (Mel) in the water phase, while Pd(0) was produced from the reduction of [PdCl(cod)] in the organic phase. The as-synthesized Pd NPs@HOF thin film was demonstrated to be an effective catalyst for the selective reduction of -nitrophenol and -nitrophenol to -aminophenol and -aminophenol.

View Article and Find Full Text PDF

The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.

View Article and Find Full Text PDF

Low-Level Fe Doping in CoMoO Enhances Surface Reconstruction and Electronic Modulation Creating an Outstanding OER Electrocatalyst for Water Splitting.

Inorg Chem

January 2025

Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China.

Efficient and stable nonprecious metal-based oxygen evolution reaction (OER) electrocatalysts are pivotal for water electrolysis technology. Herein, we are reporting an effective strategy for fabricating efficient Co-based OER electrocatalysts by low-level Fe doping in CoMoO to boost surface reconstruction and electronic modulation, which resulted in excellent OER electroactivity consequently. Our findings reveal that a mere 5.

View Article and Find Full Text PDF

Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.

View Article and Find Full Text PDF

Identical Fe-N Sites with Different Reactivity: Elucidating the Effect of Support Curvature.

ACS Appl Mater Interfaces

January 2025

CEITEC-Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic.

Detailed atomic-scale understanding is a crucial prerequisite for rational design of next-generation single-atom catalysts (SACs). However, the sub-ångström precision needed for systematic studies is challenging to achieve on common SACs. Here, we present a two-dimensional (2D) metal-organic system featuring Fe-N single-atom sites, where the metal-organic structure is modulated by 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!