Theoretical study on collision dynamics of H(+) + CH4 at low energies.

J Chem Phys

The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China.

Published: February 2014

In this work we make an investigation on collision dynamics of H(+) + CH4 at 30 eV by using time-dependent density functional theory coupled with molecular dynamics approach. All possible reactions are presented based on 9 incident orientations. The calculated fragment intensity is in nice agreement with experimental results. The mechanism of reaction transition for dissociation and proton exchange processes is explained by the intra-molecule energy transfer. However, the energy loss of the proton is in poor agreement with experimental results. The discrepancy is attributed to the mean-field treatment of potential surface. We also studied the dependence on initial velocity of both proton and methane. In addition, we find that for dynamical evolution a different self-interaction correction (SIC) may lead to different results, but with respect to the position of rainbow angle, average-density SIC seems to have reasonable correction.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4863635DOI Listing

Publication Analysis

Top Keywords

collision dynamics
8
dynamics ch4
8
agreement experimental
8
theoretical study
4
study collision
4
ch4 low
4
low energies
4
energies work
4
work investigation
4
investigation collision
4

Similar Publications

Dynamic Features Driven by Stochastic Collisions in a Nanopore for Precise Single-Molecule Identification.

J Am Chem Soc

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Nanopore technology holds great potential for single-molecule identification. However, extracting meaningful features from ionic current signals and understanding the molecular mechanisms underlying the specific features remain unresolved. In this study, we uncovered a distinctive ionic current pattern in a K238Q aerolysin nanopore, characterized by transient spikes superimposed on two stable transition states.

View Article and Find Full Text PDF

We present state-to-state differential cross sections for rotationally inelastic collisions of vibrationally excited NO XΠ ( = 9) with Ar using a near-counterpropagating molecular beam geometry. These were obtained using the stimulated emission pumping technique coupled with velocity map imaging. Collision energies well over ∼1 eV were achieved and rotational excitations up to ∼Δ = 60 recorded for the first time for inelastic collisions.

View Article and Find Full Text PDF

Combat sports encompass a wide range of disciplines, each associated with distinct injury patterns and mechanisms. From karate to wrestling, athletes face varying degrees of injury risks, with common clinical presentations including head injuries, strains, sprains, fractures, and concussions. These injuries often result from dynamic movements, physical contact, and high-impact collisions inherent to combat sports.

View Article and Find Full Text PDF

Tunable Multisoliton State Ultrafast Fiber Laser Based on NiSe and Generation of Vector Dual-Wavelength Solitons.

ACS Appl Mater Interfaces

January 2025

College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.

As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.

View Article and Find Full Text PDF

Unusual Inertness of a Ta Cluster in Dinitrogen Reactions.

J Phys Chem Lett

January 2025

Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Clusters serve as the optimal model to elucidate the structure-property relationship of materials, bridging condensed matter and individual atoms. The pursuit of exceptionally stable clusters has garnered significant interest. The distinctive electronic configuration and symmetrical geometry generally provide a consistent rationale for their stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!