Validity conditions for stochastic chemical kinetics in diffusion-limited systems.

J Chem Phys

Department of Physics, Oxford College of Emory University, 100 Hamill Street, Oxford, Georgia 30054, USA.

Published: February 2014

The chemical master equation (CME) and the mathematically equivalent stochastic simulation algorithm (SSA) assume that the reactant molecules in a chemically reacting system are "dilute" and "well-mixed" throughout the containing volume. Here we clarify what those two conditions mean, and we show why their satisfaction is necessary in order for bimolecular reactions to physically occur in the manner assumed by the CME and the SSA. We prove that these conditions are closely connected, in that a system will stay well-mixed if and only if it is dilute. We explore the implications of these validity conditions for the reaction-diffusion (or spatially inhomogeneous) extensions of the CME and the SSA to systems whose containing volumes are not necessarily well-mixed, but can be partitioned into cubical subvolumes (voxels) that are. We show that the validity conditions, together with an additional condition that is needed to ensure the physical validity of the diffusion-induced jump probability rates of molecules between voxels, require the voxel edge length to have a strictly positive lower bound. We prove that if the voxel edge length is steadily decreased in a way that respects that lower bound, the average rate at which bimolecular reactions occur in the reaction-diffusion CME and SSA will remain constant, while the average rate of diffusive transfer reactions will increase as the inverse square of the voxel edge length. We conclude that even though the reaction-diffusion CME and SSA are inherently approximate, and cannot be made exact by shrinking the voxel size to zero, they should nevertheless be useful in many practical situations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977787PMC
http://dx.doi.org/10.1063/1.4863990DOI Listing

Publication Analysis

Top Keywords

cme ssa
16
validity conditions
12
voxel edge
12
edge length
12
bimolecular reactions
8
lower bound
8
average rate
8
reaction-diffusion cme
8
cme
5
ssa
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!