In this work we derive an analytical solution given by Bessel series to the transient and one-dimensional (1D) bioheat transfer equation in a multi-layer region with spatially dependent heat sources. Each region represents an independent biological tissue characterized by temperature-invariant physiological parameters and a linearly temperature dependent metabolic heat generation. Moreover, 1D Cartesian, cylindrical or spherical coordinates are used to define the geometry and temperature boundary conditions of first, second and third kinds are assumed at the inner and outer surfaces. We present two examples of clinical applications for the developed solution. In the first one, we investigate two different heat source terms to simulate the heating in a tumor and its surrounding tissue, induced during a magnetic fluid hyperthermia technique used for cancer treatment. To obtain an accurate analytical solution, we determine the error associated with the truncated Bessel series that defines the transient solution. In the second application, we explore the potential of this model to study the effect of different environmental conditions in a multi-layered human head model (brain, bone and scalp). The convective heat transfer effect of a large blood vessel located inside the brain is also investigated. The results are further compared with a numerical solution obtained by the Finite Element Method and computed with COMSOL Multiphysics v4.1©.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913296 | PMC |
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.082 | DOI Listing |
J Acoust Soc Am
January 2025
Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
In thermal therapies, accurate estimation of in-tissue power deposition density (PDD) is essential for predicting temperature distributions over time or regularizing temperature imaging. Based on our previous work on ultrasound thermometry, namely, multi-thread thermal strain imaging (MT-TSI), this work develops an in vivo PDD estimation method. Specifically, by combining the TSI model infinitesimal echo strain filter with the bio-heat transfer theory (the Pennes equation), a finite-difference time-domain model is established to allow online extraction of the PDD.
View Article and Find Full Text PDFLasers Surg Med
January 2025
Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
Objectives: This work highlights the methods used to develop a multi-pulse 1726 nm laser system combined with bulk air-cooling for selective sebaceous gland (SG) photothermolysis using thermal imaging and software algorithms. This approach enables treating to a desired tissue temperature and depth to provide a safe, effective, reproducible, and durable treatment of acne.
Methods: We designed and built a 1726 nm laser system with a 40 W maximum power output, a highly controlled air-cooling device, and a thermal camera in the handpiece, which permits real-time temperature monitoring of the epidermis.
Magn Reson Med
January 2025
Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada.
Purpose: Brain temperature is tightly regulated and reflects a balance between cerebral metabolic heat production and heat transfer between the brain, blood, and external environment. Blood temperature and flow are critical to the regulation of brain temperature. Current methods for measuring in vivo brain and blood temperature are invasive and impractical for use in small animals.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Microwave ablation often involves the use of continuous energy-delivery protocols with a fixed power and time. To achieve larger ablation zones, a range of protocols and power levels have been studied in experimental studies. The objective of the present study was to develop and experimentally evaluate the performance of a coupled computational electromagnetic-bioheat transfer model of 2.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!