In 1891, an orthopedic surgeon in New York noted the disappearance of an inoperable sarcoma in a patient after a febrile illness. This observation resulted in experiments assessing the utility of heat therapy or thermotherapy for the treatment of cancer. While it initially fell from favor, thermotherapy has recently made a resurgence, sparking investigations into its anticancer properties. This therapy is especially attractive for glioblastoma multiforme (GBM) which is difficult to target due to the blood-brain barrier and recalcitrant to treatment. Here we briefly review the history of thermotherapy and then more methodically present the current literature as it relates to central nervous system malignancies. Recent developments show that heat is preferentially cytotoxic to tumor cells and induces cellular pathways which result in apoptotic and non-apoptotic death. Techniques to induce hyperthermia include regional hyperthermia by water bath, focused ultrasound, radiofrequency microwaves, laser-induced interstitial thermotherapy, and magnetic energy. The recent revival of these therapeutic approaches and their preliminary outcomes in the treatment of GBM is reviewed. From bacterial toxins to infusion of magnetic nanoparticles, hyperthermia has the potential to be an effective and easy-to-execute adjuvant therapy for GBM. Hyperthermia for GBM is a promising therapy as part of a growing armamentarium for malignant glioma treatment.
Download full-text PDF |
Source |
---|
J Therm Biol
January 2025
General Surgery, Department of Anesthesiology and Operating Room, School of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:
Objective: Laparoscopic cholecystectomy is a common procedure for gallbladder diseases, but many patients experience shoulder pain due to pneumoperitoneum. This study investigates the comparative effectiveness of warm carbon dioxide gas insufflation versus local heat application in reducing shoulder pain after laparoscopic cholecystectomy. We also examined changes in body temperature during surgery and postoperative shivering in the intervention and control groups.
View Article and Find Full Text PDFTheranostics
January 2025
Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China.
Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.
Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Physics, Aristotle University of Thessaloniki, University Campus, Thessaloniki, 54124, GREECE.
Magnetic nanoparticle hyperthermia (MNH) emerges as a promising therapeutic strategy for cancer treatment, leveraging alternating magnetic fields (AMFs) to induce localized heating through magnetic nanoparticles (MNPs). However, the interaction of AMFs with biological tissues leads to non-specific heating caused by eddy currents, triggering thermoregulatory responses and complex thermal gradients throughout the body of the patient. While previous studies have implemented the Atkinson-Brezovich limit to mitigate potential harm, recent research underscores discrepancies between this threshold and clinical outcomes, necessitating a re-evaluation of this safety limit.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China.
Reactive oxygen species (ROS)-mediated anticancer modalities, which disturb the redox balance of cancer cells through multi-pathway simulations, hold great promise for effective cancer management. Among these, cooperative physical and biochemical activation strategies have attracted increasing attention because of their spatiotemporal controllability, low toxicity, and high therapeutic efficacy. Herein, we demonstrate a nanogel complex as a multilevel ROS-producing system by integrating chloroperoxidase (CPO) into gold nanorod (AuNR)-based nanogels (ANGs) for cascade-amplifying photothermal-enzymatic synergistic tumor therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!