Preconception exposure to EtOH through the paternal route may affect neurobehavioral and developmental features of offspring. This study investigates the effects of paternal exposure to EtOH before conception on the hyperactivity, inattention, and impulsivity behavior of male offspring in mice. Sire mice were treated with EtOH in a concentration range approximating human binge drinking (0-4 g/kg/day EtOH) for 7 weeks and mated with untreated females mice to produce offspring. EtOH exposure to sire mice induced attention deficit hyperactivity disorder (ADHD)-like hyperactive, inattentive, and impulsive behaviors in offspring. As a mechanistic link, both protein and mRNA expression of dopamine transporter (DAT), a key determinant of ADHD-like phenotypes in experimental animals and humans, were significantly decreased by paternal EtOH exposure in cerebral cortex and striatum of offspring mice along with increased methylation of a CpG region of the DAT gene promoter. The increase in methylation of DAT gene promoter was also observed in the sperm of sire mice, suggesting germline changes in the epigenetic methylation signature of DAT gene by EtOH exposure. In addition, the expression of two key regulators of methylation-dependent epigenetic regulation of functional gene expression, namely, MeCP2 and DNMT1, was markedly decreased in offspring cortex and striatum sired by EtOH-exposed mice. These results suggest that preconceptional exposure to EtOH through the paternal route induces behavioral changes in offspring, possibly via epigenetic changes in gene expression, which is essential for the regulation of ADHD-like behaviors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.23275 | DOI Listing |
Access Microbiol
January 2025
Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
Antiseptics have been used for infection control against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Ethanol (EtOH) was found to be effective against SARS-CoV-2, while chlorhexidine gluconate (CHG) was less effective. Therefore, virucidal activity may differ between different classes of antiseptic agents.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo 05508-000 São Paulo SP Brazil
Alcohol Clin Exp Res (Hoboken)
January 2025
Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA.
Background: During the coronavirus disease 2019 (COVID-19) pandemic, there was a marked increase in alcohol consumption. COVID-19 superimposed on underlying liver disease notably worsens the outcome of many forms of liver injury. The goal of a current pilot study was to test the dual exposure of alcohol and COVID-19 infection in an experimental animal model of alcohol-associated liver disease (ALD).
View Article and Find Full Text PDFNeuropharmacology
December 2024
Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton, NY, 13902, United States. Electronic address:
Individuals with prenatal alcohol exposure (PAE) are at a higher risk for developing alcohol use disorder (AUD). Using a rat model of moderate PAE (mPAE) on gestational day 12 (G12; ∼2nd trimesters in humans), a critical period for amygdala development, we have shown disruptions in medial central amygdala (CeM) function, an important brain region associated with the development of AUD. In addition to this, acute ethanol (EtOH) increases GABA transmission in the CeM of rodents in a sex-dependent manner, a mechanism that potentially contributes to alcohol misuse.
View Article and Find Full Text PDFAlcohol Clin Exp Res (Hoboken)
December 2024
Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
Background: In rodents, third-trimester-equivalent alcohol exposure (TTAE) produces significant deficits in hippocampal-dependent memory processes such as contextual fear conditioning (CFC). The present study sought to characterize changes in both behavior and Fos neurons following CFC in ethanol (EtOH)-treated versus saline-treated mice using TRAP2:Ai14 mice that permanently label Fos neurons following a tamoxifen injection. We hypothesized that TTAE would produce long-lasting disruptions to the networks engaged following CFC with a particular emphasis on the limbic memory system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!