Increasing attention has been paid to pyrite due to its ability to generate hydroxyl radicals in air-saturated solutions. In this study, the mineral pyrite was studied as a catalyst to activate molecular oxygen to degrade Acid Orange 7 (AO7) in aqueous solution. A complete set of control experiments were conducted to optimize the reaction conditions, including the dosage of pyrite, the AO7 concentration, as well as the initial pH value. The role of reactive oxygen species (ROS) generated by pyrite in the process was elucidated by free radical quenching reactions. Furthermore, the concentrations of Fe(II) and total Fe formed were also measured. The mechanism for the production of ROS in the pyrite/H2O/O2 system was that H2O2 was formed by hydrogen ion and superoxide anion (O2(·-)) which was produced by the reaction of pyrite activating O2 and then reacted with Fe(II) dissolved from pyrite to produce (·)OH through Fenton reaction. The findings suggest that pyrite/H2O/O2 system is potentially practical in pollution treatment. Moreover, the results provide a new insight into the understanding of the mechanism for degradation of organic pollutants by pyrite.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-014-2589-1DOI Listing

Publication Analysis

Top Keywords

acid orange
8
aqueous solution
8
pyrite/h2o/o2 system
8
pyrite
7
degradation acid
4
orange aqueous
4
solution dioxygen
4
dioxygen activation
4
activation pyrite/h₂o/o₂
4
pyrite/h₂o/o₂ system
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!