Plant chip for high-throughput phenotyping of Arabidopsis.

Lab Chip

Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA.

Published: April 2014

We report on the development of a vertical and transparent microfluidic chip for high-throughput phenotyping of Arabidopsis thaliana plants. Multiple Arabidopsis seeds can be germinated and grown hydroponically over more than two weeks in the chip, thus enabling large-scale and quantitative monitoring of plant phenotypes. The novel vertical arrangement of this microfluidic device not only allows for normal gravitropic growth of the plants but also, more importantly, makes it convenient to continuously monitor phenotypic changes in plants at the whole organismal level, including seed germination and root and shoot growth (hypocotyls, cotyledons, and leaves), as well as at the cellular level. We also developed a hydrodynamic trapping method to automatically place single seeds into seed holding sites of the device and to avoid potential damage to seeds that might occur during manual loading. We demonstrated general utility of this microfluidic device by showing clear visible phenotypes of the immutans mutant of Arabidopsis, and we also showed changes occurring during plant-pathogen interactions at different developmental stages. Arabidopsis plants grown in the device maintained normal morphological and physiological behaviour, and distinct phenotypic variations consistent with a priori data were observed via high-resolution images taken in real time. Moreover, the timeline for different developmental stages for plants grown in this device was highly comparable to growth using a conventional agar plate method. This prototype plant chip technology is expected to lead to the establishment of a powerful experimental and cost-effective framework for high-throughput and precise plant phenotyping.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3lc51326bDOI Listing

Publication Analysis

Top Keywords

plant chip
8
chip high-throughput
8
high-throughput phenotyping
8
phenotyping arabidopsis
8
microfluidic device
8
developmental stages
8
plants grown
8
grown device
8
arabidopsis
5
plants
5

Similar Publications

Maize transcription factor ZmEREB167 negatively regulates starch accumulation and kernel size.

J Genet Genomics

January 2025

State Key Laboratory of Maize Bio-breeding, Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, Department of Plant Genetics and Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Beijing 100193, China. Electronic address:

Transcription factors play critical roles in the regulation of gene expression during maize kernel development. The maize endosperm is a large storage organ, accounting for nearly 90% of the dry weight of mature kernel, and is also the main place for starch storage. In this study, we identify an endosperm-specific EREB gene, ZmEREB167, which encodes a nucleus-localized EREB protein.

View Article and Find Full Text PDF

Along with the development of miniaturization, integration, and high power of electronic chips in the 5G and artificial intelligence era and their urgent need for technologies enabled to solve high heat flux dissipation in limited space, investigating bioinspired extreme superwettability surfaces with high-efficiency condensation heat transfer (CHT) performance has attracted great interest in academic and industrial communities. Compared with filmwise condensation of flat hydrophilic surfaces featured with continuous liquid films, dropwise condensation of flat hydrophobic surfaces is a more efficient type of energy transport way. However, discrete condensate drops can only shed off the hydrophobic flat surfaces under gravity until their sizes reach the capillary length of liquid, e.

View Article and Find Full Text PDF

The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Through ultrasonic polymerization, the amphiphilic peptides (CGRRGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM.

View Article and Find Full Text PDF

The Potency of Essential Oils in Combating Stored-Product Pests: From Nature to Nemesis.

Plants (Basel)

January 2025

Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy.

, , , , , , , , and represent significant arthropod stored-product pests worldwide. To combat these noxious arthropods, the current study examines the pesticidal effect of essential oils (EOs) derived from four aromatic plants, i.e.

View Article and Find Full Text PDF

A Reusable Capillary Flow-Driven Microfluidic System for Abscisic Acid Detection Using a Competitive Immunoassay.

Sensors (Basel)

January 2025

Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 1000-029 Lisbon, Portugal.

Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!