Premise Of The Study: The radiation of a lineage and its rise to ecological dominance are distinct phenomena and driven by different processes. For example, paleoecological data has been used to show that the Cretaceous angiosperm radiation did not coincide with their rise to dominance. Using a phylogenetic approach, we here explored the evolution of C4 grasses and evaluated whether the diversification of this group and its rise to ecological dominance in the late Miocene were decoupled.
Methods: We assembled a matrix including 675 grass species of the PACMAD clade and 2784 characters (ITS and ndhF) to run a molecular dating analysis using three fossils as reference calibrations. We coded species as C3 vs. C4 and reconstructed ancestral states under maximum likelihood. We used the program BiSSE to test whether rates of diversification are correlated with photosynthetic pathway and whether the radiation of C4 lineages preceded or coincided with their rise to ecological dominance from ∼10 Ma.
Key Results: C4 grass lineages first originated around 35 Ma at the time of the Eocene-Oligocene transition. Accelerated diversification of C4 lineages did not coincide with their rise to ecological dominance.
Conclusions: C4-dominated grasslands have expanded only since the Late Miocene and Pliocene. The initial diversification of their biotic elements can be tracked back as far as the Eocene-Oligocene transition. We suggest that shifts in taxonomic diversification and ecological dominance were stimulated by different factors, as in the case of the early angiosperms in the Cretaceous.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3732/ajb.1300439 | DOI Listing |
An Acad Bras Cienc
January 2025
Shandong University of Science and Technology, College of Earth Science and Engineering, 579, Qianwangang Road, Huangdao, Qingdao, Shandong Province, 266590, China.
A "comb-dentition", characterized by long, needle-like, and closely-spaced teeth, is found in the ctenochasmatid pterosaurs as an adaptation for filter-feeding. However, little is known about their tooth replacement pattern, hindering our understanding of the development of the filter-feeding apparatus of the clade. Here, we describe the tooth replacement of the pterosaur Forfexopterus from the Jehol Biota based on high-resolution X-ray Computed Tomography (CT) reconstruction.
View Article and Find Full Text PDFMicrobiome
January 2025
Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.
Background: The microbes residing in ruminant gastrointestinal tracts play a crucial role in converting plant biomass to volatile fatty acids, which serve as the primary energy source for ruminants. This gastrointestinal tract comprises a foregut (rumen) and hindgut (cecum and colon), which differ in structures and functions, particularly with respect to feed digestion and fermentation. While the rumen microbiome has been extensively studied, the cecal microbiome remains much less investigated and understood, especially concerning the assembling microbial communities and overriding pathways of hydrogen metabolism.
View Article and Find Full Text PDFEur J Protistol
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China. Electronic address:
Diatom blooms are a global ecological perturbation that releases algal organic matter (AOM), significantly affecting coastal ecosystems by altering microbial community dynamics. AOM, derived from algal cell lysis, may serve as a nutrient source influencing protistan communities. However, the effects of AOM on protistan ecology, including the community structure and assembly processes, remain largely unexplored in coastal sediments.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29-31, H-1113 Budapest, Hungary; National Laboratory for Water Sciences and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29-31, H-1113 Budapest, Hungary; Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H1113 Budapest, Hungary. Electronic address:
Microplastics (MPs) are an emerging environmental concern, but studies on these contaminants, particularly in river ecosystems, remain scarce. Research has indicated that MPs in the environment are predominantly microfibers (MFs); however, a few studies suggest that the MFs encountered are chiefly of natural origin. In this study, we aimed to improve the understanding of MP/MFs (both plastic and natural), among microparticle (solid particles >10 μm to <5000 μm; mainly of plastic as well as natural origin) loads in the Tiber River, Italy, by analyzing the physicochemical properties of surface water and assessing the abundance and characteristics of MPs-MFs at three sites: Ponte Grillo, Aniene, and Magliana, along a 60 km stretch.
View Article and Find Full Text PDFJ Plant Physiol
January 2025
Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain.
Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!