Keeping agricultural soil out of rivers: evidence of sediment and nutrient accumulation within field wetlands in the UK.

J Environ Manage

Game & Wildlife Conservation Trust, Loddington House, Main Street, Loddington, Leicestershire LE7 9XE, UK.

Published: March 2014

Intensification of agriculture has resulted in increased soil degradation and erosion, with associated pollution of surface waters. Small field wetlands, constructed along runoff pathways, offer one option for slowing down and storing runoff in order to allow more time for sedimentation and for nutrients to be taken up by plants or micro-organisms. This paper describes research to provide quantitative evidence for the effectiveness of small field wetlands in the UK landscape. Ten wetlands were built on four farms in Cumbria and Leicestershire, UK. Annual surveys of sediment and nutrient accumulation in 2010, 2011 and 2012 indicated that most sediment was trapped at a sandy site (70 tonnes over 3 years), compared to a silty site (40 tonnes over 3 years) and a clay site (2 tonnes over 3 years). The timing of rainfall was more important than total annual rainfall for sediment accumulation, with most sediment transported in a few intense rainfall events, especially when these coincided with bare soil or poor crop cover. Nutrient concentration within sediments was inversely related to median particle size, but the total mass of nutrients trapped was dependent on the total mass of sediment trapped. Ratios of nutrient elements in the wetland sediments were consistent between sites, despite different catchment characteristics across the individual wetlands. The nutrient value of sediment collected from the wetlands was similar to that of soil in the surrounding fields; dredged sediment was considered to have value as soil replacement but not as fertiliser. Overall, small field wetlands can make a valuable contribution to keeping soil out of rivers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2014.01.015DOI Listing

Publication Analysis

Top Keywords

field wetlands
16
small field
12
soil rivers
8
sediment
8
sediment nutrient
8
nutrient accumulation
8
sediment trapped
8
total mass
8
wetlands
7
soil
6

Similar Publications

Bicarbonate use reduces the photorespiration in Ottelia alismoides adapting to the CO-fluctuated aquatic systems.

Physiol Plant

January 2025

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.

Underwater CO concentration fluctuates extremely in natural water bodies. Under low CO, the unique CO concentrating mechanism in aquatic plants, bicarbonate use, can suppress photorespiration. However, it remains unknown (1) to what extent bicarbonate use reduces photorespiration, (2) how exactly photorespiration varies between bicarbonate-users and CO-obligate users under CO-fluctuated environments, and (3) what are differences in Rubisco characteristics between these two types of aquatic plants.

View Article and Find Full Text PDF

As the primary pollinator for many crops, honey bees (Apis mellifera) are critically important to food production and the agricultural economy. Adult mosquito control is often suspected by the public and commercial beekeepers to harm honey bees, creating conflicts between industries. To investigate this matter, a two-year field study was conducted on vegetated wetlands in Salt Lake City, Utah, U.

View Article and Find Full Text PDF

Bacterial and fungal diversity and species interactions inversely affect ecosystem functions under drought in a semi-arid grassland.

Microbiol Res

January 2025

Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China. Electronic address:

Extreme climatic events, such as drought, can significantly alter belowground microbial diversity and species interactions, leading to unknown consequences for ecosystem functioning. Here, we simulated a drought gradient by removing 30 %, 50 %, and 70 % of precipitation in a semi-arid grassland over five years. We assessed the effects of drought on bacterial and fungal diversity, as well as on their species interactions.

View Article and Find Full Text PDF

Paddy field ecosystems are crucial for crop production, biodiversity conservation, and ecosystem services. Although previous studies have examined paddy field biodiversity, few have addressed how the distribution and species richness of vegetation and soil seed banks are regulated. This study investigated the distribution of wetland plants and soil seed banks in paddy fields across diverse habitat types and identified factors influencing their patterns.

View Article and Find Full Text PDF

Increasing nitrogen (N) addition induces soil nutrient imbalances and is recognized as a major regulator of soil microbial communities. However, how soil bacterial abundance, diversity, and community composition respond to exogenous N addition in nutrient-poor and generally N-limited regions remains understudied. In this study, we investigated the effects of short-term exogenous N additions on soil bacterial communities using quantitative polymerase chain reaction (PCR) and Illumina Miseq sequencing in an in situ N addition field experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!