Purpose: To explore the biomechanical changes induced by repeated cross-linking using scanning acoustic microscopy (SAM).
Methods: Thirty human corneas were divided into three groups. In group A, five corneas were cross-linked once. In group B, five corneas were cross-linked twice, 24 hours apart. In group C, five corneas were cross-linked three times, 24 hours apart. The contralateral controls in all groups had similar treatment but without UV-A. The speed of sound, which is directly proportional to the square root of the tissue's elastic modulus, was assessed using SAM.
Results: In group A, the speed of sound of the treated corneas was 1677.38 ± 10.70 ms(-1) anteriorly and 1603.90 ± 9.82 ms(-1) posteriorly, while it was 1595.23 ± 9.66 ms(-1) anteriorly and 1577.13 ± 8.16 ms(-1) posteriorly in the controls. In group B, the speed of sound of the treated corneas was 1746.33 ± 23.37 ms(-1) anteriorly and 1631.60 ± 18.92 ms(-1) posteriorly, while it was 1637.57 ± 22.15 ms(-1) anteriorly and 1612.30 ± 22.23 ms(-1) posteriorly in the controls. In group C, the speed of sound of the treated corneas was 1717.97 ± 18.92 ms(-1) anteriorly and 1616.62 ± 17.58 ms(-1) posteriorly, while it was 1628.69 ± 9.37 ms(-1) anteriorly and 1597.68 ± 11.97 ms(-1) posteriorly in the controls. The speed of sound in the anterior (200 × 200 μm) region between the cross-linked and control corneas in groups A, B, and C was increased by a factor of 1.051 (P = 0.005), 1.066 (P = 0.010), and 1.055 (P = 0.005) respectively. However, there was no significant difference among the cross-linked corneas in all groups (P = 0.067).
Conclusions: A significant increase in speed of sound was found in all treated groups compared with the control group; however, the difference among the treated groups is not significant, suggesting no further cross-links are induced when collagen cross-linking treatment is repeated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120094 | PMC |
http://dx.doi.org/10.1167/iovs.13-13042 | DOI Listing |
Materials (Basel)
January 2025
Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8527, Japan.
Application of high-heat input welding on high-tensile strength steels causes deterioration of mechanical properties of the welded joint, due to softening and grain coarsening in the heat-affected zone (HAZ). In this study, low-heat input narrow-gap hot-wire laser welding was applied to 12 mm thick 780 MPa-class high-tensile strength steel plate. Conditions were optimized based on microstructural observations of joints produced at various welding speeds.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Engineering, Liverpool John Moores University, Liverpool L3 3AF, UK.
Coaxial rotor helicopters have many advantages and have a wide range of civilian and military applications; however, there is a risk of blade collision between the upper and lower rotor blades, and the challenge still exists in balancing rotor parameters and flight control. In this paper, a blade tip distance measurement method based on coded ultrasonic ranging and phase triggering is proposed to tackle this measurement environment and expand the application of ultrasonic ranging in high-speed dynamic measurement. The time of flight () of coded ultrasonic ranging is calculated by the amplitude threshold improvement method and cross-correlation method, and the sound velocity is compensated by a proposed multi-factor compensation method.
View Article and Find Full Text PDFGels
January 2025
Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, Faculty of Science, Campus Miguel Delibes, University of Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
In the present work, the influence of the addition of graphene nanoplatelets presenting different dimensions on polyurethane-polyisocyanurate aerogel structure and properties has been studied. The obtained aerogels synthesized through a sol-gel method have been fully characterized in terms of density, porosity, specific surface area, mechanical stiffness, thermal conductivity, and speed of sound. Opacified aerogels showing high porosity (>92%) and low densities (78-98 kg/m) have been produced, and the effect of the size and content of graphene nanoplatelets has been studied.
View Article and Find Full Text PDFPhotoacoustics
February 2025
School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China.
Photoacoustic tomography (PAT) enables non-invasive cross-sectional imaging of biological tissues, but it fails to map the spatial variation of speed-of-sound (SOS) within tissues. While SOS is intimately linked to density and elastic modulus of tissues, the imaging of SOS distribution serves as a complementary imaging modality to PAT. Moreover, an accurate SOS map can be leveraged to correct for PAT image degradation arising from acoustic heterogeneities.
View Article and Find Full Text PDFSci Rep
January 2025
Hebei University of Architecture, Hebei, 075000, China.
Relying on the Beijing-Zhangjiakou high-speed railway Cao Mao Shan tunnel project, blasting vibration monitoring and sound wave testing experiments were carried out. The monitoring results show that the blasting vibration velocity corresponding to the initial support satisfies the Sadowski formula. The results of the sonic test show that with the increase of blasting times, the cumulative damage increases gradually, but the blasting damage increment shows a downward trend.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!