Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Patients with strabismus perceptually suppress information from one eye to avoid double vision. Mechanisms of visual suppression likely lead to fixation-switch behavior wherein the subject acquires targets with a specific eye depending on target location in space. The purpose of this study was to investigate spatial patterns of fixation-switch behavior in strabismic monkeys.
Methods: Eye movements were acquired in three exotropic and one esotropic monkey in a binocular viewing saccade task. Spatial patterns of fixation were analyzed by calculating incidence of using either eye to fixate targets presented at various gaze locations.
Results: Broadly, spatial fixation patterns and fixation-switch behavior followed expectations if a portion of the temporal retina was suppressed in exotropia and a portion of the nasal retina was suppressed in esotropia. Fixation-switch occurred for horizontal target locations that were approximately greater than halfway between the lines of sight of the foveating and strabismic eyes. Surprisingly, the border between right eye and left eye fixation zones was not sharply defined and there was a significant extent (>10°) over which the monkeys could acquire a target with either eye.
Conclusions: We propose that spatial fixation patterns in strabismus can be accounted for in a decision framework wherein the oculomotor system has access to retinal error information from each eye and the brain chooses between them to prepare a saccade. For target locations approximately midway between the two foveae, strength of retinal error representations from each eye is almost equal, leading to trial-to-trial variability in choice of fixating eye.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943416 | PMC |
http://dx.doi.org/10.1167/iovs.13-13460 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!