A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The suppressive effects of gx-50 on Aβ-induced chemotactic migration of microglia. | LitMetric

The suppressive effects of gx-50 on Aβ-induced chemotactic migration of microglia.

Int Immunopharmacol

School of Life Science and Biotechnology, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Minhang District, Shanghai 200240, China. Electronic address:

Published: April 2014

Microglia, the main immune cells of the central nervous system (CNS), play a vital role in the development of AD. Once microglia are activated, they migrate to neuritic plaques and persistently release pro-inflammatory mediators that lead to neuroinflammation and neuronal degeneration, accelerating the progression of AD. In this study, we analyzed whether an AD candidate drug, N-[2-(3,4-dimethoxyphenyl)ethyl]-3-phenyl-acrylamide (gx-50), a compound extracted from Sichuan pepper (Zanthoxylum bungeanum), exhibited suppressive effects on the chemotactic migration of microglia induced by Aβ. At first, the effects of gx-50 on the migration of primary cultured microglia to Aβ were detected by transwell assay, and the secretion of chemokine CCL5 was measured by ELISA assay. Then, the release of TGF-β1 was detected by ELISA and quantitative real-time PCR, and the activation of the TGF-β1-Smad2 pathway was analyzed by Western blotting. The LDH assay revealed that cell viability was not affected by gx-50 at concentrations from 0.01 to 100 μM; thus, combined with our previous studies, 1 μM was chosen as the treatment concentration. The cell transwell measurement demonstrated that gx-50 suppressed the chemotactic migration of microglia by nearly 50% and inhibited the increase in CCL5 triggered by Aβ. Moreover, the analysis of the TGF-β1-Smad2 pathway revealed that gx-50 can antagonize Aβ-induced down-regulation of TGF-β1 at both the mRNA and protein levels and stimulate the signal pathway activation. Simultaneously, gx-50 pretreatment also significantly enhanced the phosphorylation of glycogen synthase kinase-3β (GSK-3β), which correlated closely with the migration of microglia. In conclusion, in the presence of Aβ, gx-50 pretreatment inhibited the excessive chemotactic migration of microglia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2014.01.025DOI Listing

Publication Analysis

Top Keywords

migration microglia
20
chemotactic migration
16
suppressive effects
8
gx-50
8
effects gx-50
8
microglia
8
tgf-β1-smad2 pathway
8
gx-50 pretreatment
8
migration
6
gx-50 aβ-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!