Introduction: Eicosanoids are important in bone physiology but the specific function of phopholipase enzymes has not been determined in osteoclasts. The objective of this is study was to determine the presence of cPLA2 in human in vitro-differentiated osteoclasts as well as osteoclasts in situ from bone biopsies.

Materials And Methods: Osteoclastogenesis, apoptosis, bone resorption and the modulation of actin cytoskeleton assays were performed on osteoclasts differentiated in vitro. Immunohistochemistry was done in differentiated osteoclasts as well as on bone biopsies.

Results: Human osteoclasts from normal, fetal, osteoarthritic, osteoporotic and Pagetic bone biopsies express cPLA2 and stimulation with RANKL increases cPLA2 phosphorylation in vitro. Inhibition of cPLA2 increased osteoclastogenesis and decreased apoptosis but decreased the capacity of osteoclasts to generate actin rings and to resorb bone.

Discussion And Conclusions: These results suggest that cPLA2 modulates osteoclast functions and could be a useful target in bone diseases with hyperactivated osteoclasts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plefa.2013.12.009DOI Listing

Publication Analysis

Top Keywords

osteoclasts
9
human osteoclasts
8
osteoclasts well
8
bone
6
cpla2
5
cytosolic phospholipase
4
phospholipase eicosanoids
4
eicosanoids modulate
4
modulate life
4
life death
4

Similar Publications

Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.

JCI Insight

January 2025

Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.

View Article and Find Full Text PDF

FSH exacerbates bone loss by promoting osteoclast energy metabolism through the CREB-MDH2-NAD axis.

Metabolism

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China. Electronic address:

Aims: Osteoclast energy metabolism is a promising target for treating diseases characterized by high osteoclast activity, such as osteoporosis. However, the regulatory factors involved in osteoclast bioenergetic processes are still in the early stages of being fully understood. This study reveals the effects of follicle-stimulating hormone (FSH) on osteoclast energy metabolism.

View Article and Find Full Text PDF

Screening and Preparation of Nanobodies for SIGLEC-15 Detection.

Protein Expr Purif

January 2025

Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital of Chinese Academy of Medical Sciences, Langfang Campus, Langfang, 065001, China. Electronic address:

As an important member of the Siglec family, SIGLEC-15 plays an important role in osteoclast differentiation, bone remodeling, and tumor immune evasion. In the tumor microenvironment, SIGLEC-15 functions independently of the B7-H1/PD-1 pathway. In this study, the SIGLEC-15 fusion protein (SIGLEC-15-Fc) was successfully expressed and purified using a eukaryotic expression system.

View Article and Find Full Text PDF

Rectifying the Crosstalk between the Skeletal and Immune Systems Improves Osteoporosis Treatment by Core-Shell Nanocapsules.

ACS Nano

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

Contemporary osteoporosis treatment often neglects the intricate interactions among immune cells, signaling proteins, and cytokines within the osteoporotic microenvironment. Here, we developed core-shell nanocapsules composed of a cationized lactoferrin core and an alendronate polymer shell. By tuning the size of these nanocapsules and leveraging the alendronate shell, we enabled precise delivery of small interfering RNA targeting the Semaphorin 4D gene (siSema4D) to specific bone sites.

View Article and Find Full Text PDF

The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!