With the increasing use of next-generation sequencing applications, there has been an increase in identification of genetic causes of cardiac disease. This technology has also enabled the transition of these genes into the clinical setting and the rapid growth of large gene tests for the diagnosis of heart disorders. The ability to combine tests to include similar, but distinct, diseases has shown that many genes can be responsible for a wide variety of both syndromic and nonsyndromic disorders. This article discusses the current state of molecular genetic diagnosis for cardiac disorders, focusing on diseases with mendelian inheritance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cll.2013.11.011 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Division of Biochemistry and Molecular Biology, Federal State Budgetary Educational Institution of Higher Education "Siberian State Medical University" of the Ministry of Health of Russia, 634050 Tomsk, Russia.
Background: Over the past five years, the pregnancy rate in assisted reproductive technology (ART) programs in Russia has remained relatively stable. The aim of this study was to assess the distribution of monocyte and macrophage subsets in the blood and follicular fluid of infertile women undergoing assisted reproductive technology.
Methods: The study involved 45 women with a mean age of 35 ± 4.
Front Biosci (Landmark Ed)
January 2025
Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany.
Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.
Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China.
Endometrial Cancer (EC) is one of the most common gynecological malignancies, ranking first in developed countries and regions. The occurrence and development of EC is closely associated with genetic mutations. mutation, in particular, can lead to the dysfunction of numerous regulatory factors and alteration of the tumor microenvironment (TME).
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
January 2025
International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518060, China.
Relieving hypoxia in the tumor microenvironment (TME) promotes innate and adaptive immunity. Our previous research demonstrated that reoxygenation of the TME promotes the phagocytosis and tumor-killing functions of tumor-associated macrophages (TAMs) by upregulating pyruvate carboxylase (PCB). However, the mechanism remains obscure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!