The engulfment function of macrophages relies on complex molecular interactions involving both lipids and proteins. In particular, the clearance of apoptotic bodies (efferocytosis) is enabled by externalization on the cell target of phosphatidylserine lipids, which activate receptors on macrophages, suggesting that (local) specific lipid-protein interactions are required at least for the initiation of efferocytosis. However, in addition to apoptotic cells, macrophages can engulf foreign bodies that vary substantially in size from a few nanometers to microns, suggesting that nonspecific interactions over a wide range of length scales could be relevant. Here, we use model lipid membranes (made of phosphatidylcholine, phosphatidylserine, and ceramide) and rat alveolar macrophages to show how lipid bilayer properties probed by small-angle x-ray scattering and solid-state (2)H NMR correlate with engulfment rates measured by flow cytometry. We find that engulfment of protein-free model lipid vesicles is promoted by the presence of phosphatidylserine lipids but inhibited by ceramide, in accord with a previous study of apoptotic cells. We conclude that the roles of phosphatidylserine and ceramide in phagocytosis is based, at least in part, on lipid-mediated modification of membrane physical properties, including interactions at large length scales as well as local lipid ordering and possible domain formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944992 | PMC |
http://dx.doi.org/10.1016/j.bpj.2013.12.036 | DOI Listing |
Am J Respir Cell Mol Biol
January 2025
University of Groningen, University Medical Center Groningen, Department of Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands.
Asthma is a genetically complex inflammatory airway disease associated with over 200 Single nucleotide polymorphisms (SNPs). However, the functional effects of many asthma-associated SNPs in lung and airway epithelial samples are unknown. Here, we aimed to conduct expression quantitative trait loci (eQTL) analysis using a meta-analysis of nasal and lung samples.
View Article and Find Full Text PDFPediatr Pulmonol
January 2025
Centre de Ressources et de Compétences pour la Mucoviscidose, CHU Timone-Enfants, Marseille, France.
Introduction: Cellular characteristics of induced sputum (IS) are not investigated in cystic fibrosis (CF) patients.
Objectives: This pilot study, conducted on 17 expectorating CF adolescents, compared sputa obtained the same day, in a stable period, by autogenic drainage (expectorating sputum, ES) and 4 h later after inhaling hypertonic saline (IS).
Results: No difference was noted concerning weight, volume, and percentage of dead cells between the two collection methods.
Respir Med
January 2025
Department of Nursing, Hungkuang University, Taichung City, Taiwan; Department of Orthopedics, Changhua Christian Hospital, Changhua City, Taiwan. Electronic address:
Background: Chronic Obstructive Pulmonary Disease (COPD) is a challenging respiratory condition characterized by persistent airflow limitation and progressive lung function decline. The identification of robust biomarkers is crucial for early diagnosis, monitoring disease progression, and guiding therapeutic strategies.
Methods: In this study, we employed a comprehensive bioinformatics approach utilizing multiple Gene Expression Omnibus (GEO) datasets to identify potential COPD biomarkers.
Am J Physiol Lung Cell Mol Physiol
January 2025
Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, UT, USA.
Ozone (O) is a ubiquitous pollutant known to produce acute, transient inflammation through oxidative injury and inflammation. These effects are exacerbated in susceptible populations, such as the elderly and those exhibiting genetic mutations in central nodes of pulmonary function. To comprehend the impact of these predisposing factors, the present study examines structural, mechanical, and immunological responses to single acute O exposure (0.
View Article and Find Full Text PDFJ Appl Toxicol
December 2024
Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India.
Arsenic (As), a highly toxic metalloid, is present throughout our environment as a result of both natural and human-related activities. Furthermore, As exposure could lead to a persistent inflammatory response, which may facilitate the pathogenesis of several diseases in various organs. This study was performed to investigate the As-induced inflammatory response and the underlying molecular mechanisms in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!