Background & Aims: A high-fat diet (HFD) can cause serious health problems, including alteration of gastrointestinal transit, the exact mechanism of which is not clear. Several microRNAs (miRNAs) are involved in energy homeostasis, lipid metabolism, and HFD-induced weight gain. We investigated the role of miRNAs in HFD-induced damage to the enteric nervous system.

Methods: Male mice were fed a HFD (60% calories from fat) or regular diets (18% calories from fat) for 11 weeks. Mice on regular diets and HFDs were given intraperitoneal injections of Mir375 inhibitor or a negative control. Body weights, food intake, stool indices, and gastrointestinal transit (following Evans blue gavage) were measured. An enteric neuronal cell line (immorto-fetal enteric neuronal) and primary enteric neurons were used for in vitro studies.

Results: HFD delayed intestinal transit, which was associated with increased apoptosis and loss of colonic myenteric neurons. Mice fed a low-palmitate HFD did not develop a similar phenotype. Palmitate caused apoptosis of enteric neuronal cells associated with mitochondrial dysfunction and endoplasmic reticulum stress. Palmitate significantly increased the expression of Mir375 in vitro; transfection of cells with a Mir375 inhibitor prevented the palmitate-induced enteric neuronal cell apoptosis. Mir375 expression was increased in myenteric ganglia of mice fed HFD and associated with decreased levels of Mir375 target messenger RNAs, including Pdk1. Systemic injection of a Mir375 inhibitor for 5 weeks prevented HFD-induced delay in intestinal transit and morphologic changes.

Conclusions: HFDs delay colonic transit, partly by inducing apoptosis in enteric neuronal cells. This effect is mediated by Mir375 and is associated with reduced levels of Pdk1. Mir375 might be targeted to increase survival of enteric neurons and gastrointestinal motility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920196PMC
http://dx.doi.org/10.1053/j.gastro.2013.10.053DOI Listing

Publication Analysis

Top Keywords

enteric neuronal
24
intestinal transit
12
mice fed
12
mir375 inhibitor
12
enteric
9
palmitate-induced enteric
8
delayed intestinal
8
gastrointestinal transit
8
fed hfd
8
calories fat
8

Similar Publications

Diet-Microbiome-ENS connection: Impact of the Cafeteria Diet.

Am J Physiol Gastrointest Liver Physiol

January 2025

Digestive Diseases, Emory University, Atlanta, GA, United States.

The interplay between diet-induced obesity and gastrointestinal dysfunction is an evolving area of research with far-reaching implications for understanding the gutbrain axis interactions. In their study, Ramírez-Maldonado et al. employ a cafeteria (CAF) diet model to investigate the effects on gut microbiota, enteric nervous system (ENS) integrity and function, and gastrointestinal motility in mice.

View Article and Find Full Text PDF

Hirschsprung's disease (HSCR) is characterized by congenital absence of ganglion cells in the gastrointestinal tract, which leads to impaired defecation, constipation and intestinal obstruction. The current diagnosis of HSCR is based on Rectal Suction Biopsies (RSBs), which could be complex in newborns. Occasionally, there is a delay in diagnosis that can increase the risk of clinical complications.

View Article and Find Full Text PDF

Magnesium ions regulate the Warburg effect to promote the differentiation of enteric neural crest cells into neurons.

Stem Cell Res Ther

January 2025

Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.

Background: Understanding how enteric neural crest cells (ENCCs) differentiate into neurons is crucial for neurogenesis therapy and gastrointestinal disease research. This study explores how magnesium ions regulate the glycolytic pathway to enhance ENCCs differentiation into neurons.

Materials And Methods: We used polymerase chain reaction, western blot, immunofluorescence, and multielectrode array techniques to assess magnesium ions' impact on ENCCs differentiation.

View Article and Find Full Text PDF

Nonylphenol exposure increases the risk of Hirschsprung's disease by inducing macrophage M1 polarization.

Ecotoxicol Environ Saf

January 2025

Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China. Electronic address:

Nonylphenol (NP), a ubiquitous environmental contaminant used as a surfactant in industrial production and classified as an endocrine disruptor, could interfere hormone secretion and exhibit neurotoxicity in organisms. Hirschsprung's disease (HSCR), one of the most frequently observed congenital malformations of the digestive system, arises mainly due to the failure of enteric neural crest cells to migrate to the distal colon during embryonic development. However, the effects of NP exposure on HSCR are largely unknown.

View Article and Find Full Text PDF

Unlabelled: Stress affects gastrointestinal (GI) function causing dysmotility, especially in patients. GI motility is regulated by the enteric nervous system (ENS), suggesting that stress alters ENS biology to cause dysmotility. While stress increases glucocorticoid levels through the hypothalamus-pituitary-adrenal axis, how glucocorticoids affect GI motility is not known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!