The synthesis of graft copolymer [κ-carrageenan-g-N-(hydroxymethyl) acrylamide] is carried out in nitrogen atmosphere using potassium peroxymonosulphate (PMS) and glycolic acid (GA) as redox system. The effect of reaction variables including the concentration of N-(hydroxymethyl) acrylamide (4 × 10(-2) to 36 × 10(-2))mol dm(-3), PMS (4 × 10(-3) to 20 × 10(-3))mol dm(-3), GA (1.6 × 10(-3) to 4.8 × 10(-3)) mol dm(-3), sulphuric acid (4 × 10(-3) to 12 × 10(-3)) mol dm(-3), κ-carrageenan (0.6-1.8) g dm(-3) as well as time duration (60-180)min and temperature (25-45)°C has been studied. The physicochemical properties of graft copolymer synthesized have been performed in terms of water swelling, metal ion sorption and flocculation with respect to the κ-carrageenan as a parent polymer. The graft copolymer has been characterized by FTIR and thermogravimetic analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2013.12.004 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.
Cold isostatic pressing, gel casting, and protein coagulation are the most common techniques to produce green bodies prior to computer numerical control (CNC)-based machining for the near-net-scale shaping of ceramics. These methods typically involve various additives and entail several steps to create a green body that is capable of withstanding machining forces. Here, utilizing a single additive, we first introduced a facile benchtop method to generate self-standing, malleable doughs of alumina in under 2 min.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical Engineering, University of Patras, 26500 Patras, Greece.
In this article, we report on the alginate heterografted by Poly(N-isopropyl acrylamide-co-N-tert-butyl acrylamide) and Poly(N-isopropyl acrylamide) (ALG-g-P(NIPAM86-co-NtBAM14)-g-PNIPAM) copolymer thermoresponsive hydrogel, reinforced by substituting part of the 5 wt% aqueous formulation by small amounts of Poly(acrylic acid)-g-P(boc-L-Lysine) (PAA-g-P(b-LL)) graft copolymer (up to 1 wt%). The resulting complex hydrogels were explored by oscillatory and steady-state shear rheology. The thermoresponsive profile of the formulations were affected remarkably by increasing the PAA-g-P(b-LL) component of the polymer blend.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile.
A series of hydrophilic copolymers were prepared using 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) from free radical polymerization at different feed monomer ratios using ammonium persulfate (APS) initiators in water at 70 °C. The herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) was grafted to Poly(HEMA--IA) by a condensation reaction. The hydrolysis of the polymeric release system, Poly(HEMA--IA)-2,4-D, demonstrated that the release of the herbicide in an aqueous phase depends on the polymeric system's pH value and hydrophilic character.
View Article and Find Full Text PDFMolecules
December 2024
"Coriolan Drăgulescu" Institute of Chemistry, 24 Mihai Viteazul Blv., 300223 Timisoara, Romania.
Bacterial contamination is a major public health concern on a global scale. Treatment resistance in bacterial infections is becoming a significant problem that requires solutions. We were interested in obtaining new polymeric functionalized compounds with antibacterial properties.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia.
The use of 3D-printed gene-activated bone grafts represents a highly promising approach in the fields of dentistry and orthopedics. Bioresorbable poly-lactic-co-glycolic acid (PLGA) scaffolds, infused with adenoviral constructs that carry osteoinductive factor genes, may provide an effective alternative to existing bone grafts for the reconstruction of extensive bone defects. This study aims to develop and investigate the properties of 3D scaffolds composed of PLGA and adenoviral constructs carrying the BMP2 gene (Ad-BMP2), both in vitro and in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!