Grafting of N-(hydroxymethyl) acrylamide on to κ-carrageenan: synthesis, characterization and applications.

Carbohydr Polym

Polymer Science Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India. Electronic address:

Published: February 2014

The synthesis of graft copolymer [κ-carrageenan-g-N-(hydroxymethyl) acrylamide] is carried out in nitrogen atmosphere using potassium peroxymonosulphate (PMS) and glycolic acid (GA) as redox system. The effect of reaction variables including the concentration of N-(hydroxymethyl) acrylamide (4 × 10(-2) to 36 × 10(-2))mol dm(-3), PMS (4 × 10(-3) to 20 × 10(-3))mol dm(-3), GA (1.6 × 10(-3) to 4.8 × 10(-3)) mol dm(-3), sulphuric acid (4 × 10(-3) to 12 × 10(-3)) mol dm(-3), κ-carrageenan (0.6-1.8) g dm(-3) as well as time duration (60-180)min and temperature (25-45)°C has been studied. The physicochemical properties of graft copolymer synthesized have been performed in terms of water swelling, metal ion sorption and flocculation with respect to the κ-carrageenan as a parent polymer. The graft copolymer has been characterized by FTIR and thermogravimetic analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2013.12.004DOI Listing

Publication Analysis

Top Keywords

graft copolymer
12
n-hydroxymethyl acrylamide
8
10-3 10-3
8
10-3 mol
8
mol dm-3
8
dm-3
5
10-3
5
grafting n-hydroxymethyl
4
acrylamide κ-carrageenan
4
κ-carrageenan synthesis
4

Similar Publications

Benchtop Machining of Self-Standing Alumina Doughs for Low-Number Fabrication and Prototyping.

ACS Appl Mater Interfaces

January 2025

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.

Cold isostatic pressing, gel casting, and protein coagulation are the most common techniques to produce green bodies prior to computer numerical control (CNC)-based machining for the near-net-scale shaping of ceramics. These methods typically involve various additives and entail several steps to create a green body that is capable of withstanding machining forces. Here, utilizing a single additive, we first introduced a facile benchtop method to generate self-standing, malleable doughs of alumina in under 2 min.

View Article and Find Full Text PDF

In this article, we report on the alginate heterografted by Poly(N-isopropyl acrylamide-co-N-tert-butyl acrylamide) and Poly(N-isopropyl acrylamide) (ALG-g-P(NIPAM86-co-NtBAM14)-g-PNIPAM) copolymer thermoresponsive hydrogel, reinforced by substituting part of the 5 wt% aqueous formulation by small amounts of Poly(acrylic acid)-g-P(boc-L-Lysine) (PAA-g-P(b-LL)) graft copolymer (up to 1 wt%). The resulting complex hydrogels were explored by oscillatory and steady-state shear rheology. The thermoresponsive profile of the formulations were affected remarkably by increasing the PAA-g-P(b-LL) component of the polymer blend.

View Article and Find Full Text PDF

The Design of a Controlled-Release Polymer of a Phytopharmaceutical Agent: A Study on the Release in Different PH Environments Using the Ultrafiltration Technique.

Polymers (Basel)

December 2024

Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile.

A series of hydrophilic copolymers were prepared using 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) from free radical polymerization at different feed monomer ratios using ammonium persulfate (APS) initiators in water at 70 °C. The herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) was grafted to Poly(HEMA--IA) by a condensation reaction. The hydrolysis of the polymeric release system, Poly(HEMA--IA)-2,4-D, demonstrated that the release of the herbicide in an aqueous phase depends on the polymeric system's pH value and hydrophilic character.

View Article and Find Full Text PDF

Bacterial contamination is a major public health concern on a global scale. Treatment resistance in bacterial infections is becoming a significant problem that requires solutions. We were interested in obtaining new polymeric functionalized compounds with antibacterial properties.

View Article and Find Full Text PDF

The use of 3D-printed gene-activated bone grafts represents a highly promising approach in the fields of dentistry and orthopedics. Bioresorbable poly-lactic-co-glycolic acid (PLGA) scaffolds, infused with adenoviral constructs that carry osteoinductive factor genes, may provide an effective alternative to existing bone grafts for the reconstruction of extensive bone defects. This study aims to develop and investigate the properties of 3D scaffolds composed of PLGA and adenoviral constructs carrying the BMP2 gene (Ad-BMP2), both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!