Vaginal microbicides and their delivery platforms.

Expert Opin Drug Deliv

Children's Center for Cancer and Blood Diseases , Children's Hospital Los Angeles, Smith Research Tower Suite 316, 4650 Sunset Boulevard, CHLA Mailstop 160, Los Angeles, CA , USA

Published: May 2014

Introduction: HIV type 1 infection, despite having fallen by one-third over the past decade, remains a global health concern affecting millions of individuals worldwide. A focal point in contemporary research aimed at global HIV prevention has been the development of safe and efficacious coitally dependent and coitally independent anti-HIV microbicides to curb heterosexual HIV transmission. Despite extensive research efforts to develop novel vaginal antiretroviral (ARV) formulations and intravaginal ring delivery systems, the clinical advancement of microbicides with improved safety, efficacy and tolerability has significantly lagged behind.

Areas Covered: This review focuses on the current status of both coitally dependent and coitally independent delivery platforms designed to increase user acceptability and clinical effectiveness of anti-HIV microbicides. The clinical failure of several vaginal microbicide candidates has propelled the field to mechanism-based ARV candidates that act more specifically on viral receptors, viral enzymes and host proteins. Consequently, improved vaginal microbicide delivery strategies that achieve uniform drug distribution with enhanced solubility, sustained drug release, improved product adherence with reduced dosing frequency and lack of effect on the vaginal mucosa and microbiota are being sought.

Expert Opinion: Clinical success with vaginal microbicides may best be achieved through the combined effects of ARV compounds that exhibit different mechanisms of action with potent activity against multidrug-resistant HIV and efficacious delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1517/17425247.2014.888055DOI Listing

Publication Analysis

Top Keywords

vaginal microbicides
8
delivery platforms
8
coitally dependent
8
dependent coitally
8
coitally independent
8
anti-hiv microbicides
8
delivery systems
8
vaginal microbicide
8
vaginal
6
delivery
5

Similar Publications

Novel Isoxazole-Based Antifungal Drug Candidates.

Int J Mol Sci

December 2024

Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland.

Microbiological communities have a significant impact on health and disease. are ubiquitous fungal pathogens that colonize the mucosal surfaces of the genital, urinary, respiratory, and gastrointestinal tracts, as well as the oral cavity. If the immune system is inadequate, then infections may pose a significant threat.

View Article and Find Full Text PDF

Background: Bacterial vaginosis (BV) is a prevalent vaginal condition among reproductive-age women, characterized by off-white, thin vaginal discharge with a fishy odor. It increases susceptibility to sexually transmitted diseases (STDs) and pelvic inflammatory disease (PID). BV involves a shift in vaginal microbiota, with reduced lactobacilli and increased anaerobic bacteria.

View Article and Find Full Text PDF

Candida lusitaniae is one of the fungal species which causes serious health illnesses including peritonitis, vaginitis and fungemia, among others. Several antifungal drugs have been designed to tackle its infections but their efficacy is still questionable due to their associated side effects. Hence, there is a need to design those drugs which possess comparatively higher degree of therapeutic potential.

View Article and Find Full Text PDF

Taylorella equigenitalis is the causative agent of sexually transmitted contagious equine metritis. Infections manifest as cervicitis, vaginitis and endometritis and cause temporary infertility and miscarriages of mares. While previous studies have analyzed this organism for various parameters, the evolutionary dynamics of this pathogen, including the emergence of antibiotic resistance, remains unresolved.

View Article and Find Full Text PDF

A sterilization method for human decellularized vaginal matrices.

Sci Rep

December 2024

Department of Medical Microbiology and Infection Prevention, Amsterdam UMC - Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.

Vaginal reconstruction is necessary for various congenital and acquired conditions, including vaginal aplasia, trauma, tumors, and gender incongruency. Current surgical and non-surgical treatments often result in significant complications. Decellularized vaginal matrices (DVMs) from human tissue offer a promising alternative, but require effective sterilization to ensure safety and functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!