Although bone morphogenic protein (BMP) signaling promotes chondrogenesis, it is not clear whether BMP-induced chondrocyte maturation is cell-autonomously terminated. Loss of function of Smpd3 in mice results in an increase in mature hypertrophic chondrocytes. Here, we report that in chondrocytes the Runx2-dependent expression of Smpd3 was increased by BMP-2 stimulation. Neutral sphingomyelinase 2 (nSMase2), encoded by the Smpd3 gene, was detected both in prehypertrophic and hypertrophic chondrocytes of mouse embryo bone cartilage. An siRNA for Smpd3, as well as the nSMase inhibitor GW4869, significantly enhanced BMP-2-induced differentiation and maturation of chondrocytes. Conversely, overexpression of Smpd3 or C2-ceramide, which mimics the function of nSMase2, inhibited chondrogenesis. Upon induction of Smpd3 siRNA or GW4869, phosphorylation of both Akt and S6 proteins was increased. The accelerated chondrogenesis induced by Smpd3 silencing was negated by application of the Akt inhibitor MK2206 or the mammalian target of rapamycin inhibitor rapamycin. Importantly, in mouse bone culture, GW4869 treatment significantly promoted BMP-2-induced hypertrophic maturation and calcification of chondrocytes, which subsequently was eliminated by C2-ceramide. Smpd3 knockdown decreased the apoptosis of terminally matured ATDC5 chondrocytes, probably as a result of decreased ceramide production. In addition, we found that expression of hyaluronan synthase 2 (Has2) was elevated by a loss of Smpd3, which was restored by MK2206. Indeed, expression of Has2 protein decreased in nSMase2-positive hypertrophic chondrocytes in the bones of mouse embryos. Our data suggest that the Smpd3/nSMase2-ceramide-Akt signaling axis negatively regulates BMP-induced chondrocyte maturation and Has2 expression to control the rate of endochondral ossification as a negative feedback mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961644PMC
http://dx.doi.org/10.1074/jbc.M113.509331DOI Listing

Publication Analysis

Top Keywords

chondrocyte maturation
12
hypertrophic chondrocytes
12
smpd3
9
bone morphogenic
8
morphogenic protein
8
protein bmp
8
bmp signaling
8
neutral sphingomyelinase
8
negative feedback
8
feedback mechanism
8

Similar Publications

ANXA2 promotes chondrocyte differentiation and fracture healing by regulating the phosphorylation of STAT3 and PI3K/AKT signaling pathways.

Cell Signal

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China. Electronic address:

Fractures are common and serious skeletal injuries, and accelerating their healing while alleviating patient suffering remains a clinical challenge. Annexin A2 (ANXA2) is a widely distributed, calcium-dependent, phospholipid-binding protein involved in bone remodeling. However, its role in chondrocyte differentiation and endochondral ossification remains unclear.

View Article and Find Full Text PDF

Despite being a major target of reconstructive surgery, development of the ear pinna remains poorly studied. Here we provide a cellular characterization of late gestational and postnatal ear pinna development in two rodents and investigate the role of BMP5 in expansion and differentiation of auricular elastic cartilage. We find that ear pinna development is largely conserved between Mus musculus and the highly regenerative Acomys dimidiatus.

View Article and Find Full Text PDF

FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia.

Bone Res

January 2025

Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France.

Gain-of-function mutations in fibroblast growth factor receptor (FGFR) genes lead to chondrodysplasia and craniosynostoses. FGFR signaling has a key role in the formation and repair of the craniofacial skeleton. Here, we analyzed the impact of Fgfr2- and Fgfr3-activating mutations on mandibular bone formation and endochondral bone repair after non-stabilized mandibular fractures in mouse models of Crouzon syndrome (Crz) and hypochondroplasia (Hch).

View Article and Find Full Text PDF

Introduction: Mesenchymal stem cell (MSC)-based therapies have emerged as a promising approach for treating articular cartilage injuries. However, enhancing the chondrogenic differentiation potential of MSCs remains a significant challenge. KDM6B, a histone demethylase that specifically removes H3K27me3 marks, is essential in controlling the maturation of chondrocytes.

View Article and Find Full Text PDF

Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side.

Pharmaceutics

December 2024

Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.

The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!