Purpose: During vibration of the whole unloaded lower leg, effects on capillary blood content and blood oxygenation were measured in the calf muscle. The hypotheses predicted extrusion of venous blood by a tonic reflex contraction and that reactive hyperaemia could be observed after vibration.

Methods: Twelve male subjects sat in front of a vibration platform with their right foot affixed to the platform. In four intervals of 3-min duration vibration was applied with a peak-to-peak displacement of 5 mm at frequencies 15 or 25 Hz, and two foot positions, respectively. Near infrared spectroscopy was used for measuring haemoglobin oxygen saturation (SmO2) and the concentration of total haemoglobin (tHb) in the medial gastrocnemius muscle.

Results: Within 30 s of vibration SmO2 increased from 55 ± 1 to 66 ± 1 % (mean ± SE). Within 1.5 min afterwards SmO2 decreased to a steady state (62 ± 1 %). During the following 3 min of recovery SmO2 slowly decreased back to base line. THb decreased within the first 30 s of vibration, remained almost constant until the end of vibration, and slowly recovered to baseline afterwards. No significant differences were found for the two vibration frequencies and the two foot positions.

Conclusions: The relaxed and unloaded calf muscles did not respond to vibration with a remarkable reflex contraction. The acceleration by vibration apparently ejected capillary venous blood from the muscle. Subsequent recovery did not match with a reactive hyperaemia indicating that the mere mechanical stress did not cause vasodilation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983877PMC
http://dx.doi.org/10.1007/s00421-014-2834-9DOI Listing

Publication Analysis

Top Keywords

venous blood
12
vibration
10
unloaded lower
8
lower leg
8
calf muscles
8
reflex contraction
8
reactive hyperaemia
8
frequencies foot
8
blood
5
leg vibration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!