Aspergillus flavus is a ubiquitous saprophyte that is able to produce the most potent natural carcinogenic compound known as aflatoxin B1 (AFB1). This toxin frequently contaminates crops including corn, cotton, peanuts, and tree nuts causing substantial economic loss worldwide. Consequently, more than 100 countries have strict regulations limiting AFB1 in foodstuffs and feedstuffs. Plants and microbes are able to produce volatile compounds that act as a defense mechanism against other organisms. Pichia anomala strain WRL-076 is a biocontrol yeast currently being tested to reduce AF contamination of tree nuts in California. We used the SPME-GC/MS analysis and identified the major volatile compound produced by this strain to be 2-phenylethanol (2-PE). It inhibited spore germination and AF production of A. flavus. Inhibition of AF formation by 2-PE was correlated with significant down regulation of clustering AF biosynthesis genes as evidenced by several to greater than 10,000-fold decrease in gene expression. In a time-course analysis we found that 2-PE also altered the expression patterns of chromatin modifying genes, MYST1, MYST2, MYST3, gcn5, hdaA and rpdA. The biocontrol capacity of P. anomala can be attributed to the production of 2-PE, which affects spore germination, growth, toxin production, and gene expression in A. flavus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12550-014-0189-zDOI Listing

Publication Analysis

Top Keywords

major volatile
8
volatile compound
8
biocontrol yeast
8
pichia anomala
8
aspergillus flavus
8
tree nuts
8
spore germination
8
gene expression
8
compound 2-phenylethanol
4
2-phenylethanol biocontrol
4

Similar Publications

A novel hierarchical porous biochar based on ZIF-8 volatile hard template with high-efficiency electrochemical sensing performance for trace determination of Ponceau 4R.

Mikrochim Acta

January 2025

Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species 2024SSY04093, College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.

A convenient method is proposed using a heat-treatable volatile template to prepare hierarchical porous biochar (HPB). Litsea cubeba leaves and ZIF-8 served as carbon source and volatile hard template, respectively. The good compatibility between ZIF-8 and biomass facilitated their uniform dispersion, and the thermal decomposition of ZIF-8 created abundant pores in the HPB.

View Article and Find Full Text PDF

Secondary organic aerosols (SOAs) significantly impact Earth's climate and human health. Although the oxidation of volatile organic compounds (VOCs) has been recognized as the major contributor to the atmospheric SOA budget, the mechanisms by which this process produces SOA-forming highly oxygenated organic molecules (HOMs) remain unclear. A major challenge is navigating the complex chemical landscape of these transformations, which traditional hypothesis-driven methods fail to thoroughly investigate.

View Article and Find Full Text PDF

Unlabelled: Evolution of cooperation is a major, extensively studied problem in evolutionary biology. Cooperation is beneficial for a population as a whole but costly for the bearers of social traits such that cheaters enjoy a selective advantage over cooperators. Here we focus on coevolution of cooperators and cheaters in a multi-level selection framework, by modeling competition among groups composed of cooperators and cheaters.

View Article and Find Full Text PDF

Coffee is a popular beverage with significant commercial and social importance. The study aimed to determine the fatty acids profile, volatile compounds, and concentration of major and trace elements (Na, Mg, K, Ca, P, S, Fe, Mn, Cu, Zn, Cr, Ni, Cd, and Pb) in the two most important varieties of coffee, namely arabica and robusta. The leaching percentages of mineral elements and the effect of boiling time on the transfer of elements to aqueous extracts were also determined.

View Article and Find Full Text PDF

Characterization of volatile compounds profiles and identification of key volatile and odor-active compounds in 40 sweetpotato ( L.) varieties.

Food Chem X

January 2025

Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China.

Sweetpotato with different flesh colors exhibits significant differences in flavor. Nevertheless, research on the identification of the key aromatic compounds in sweetpotato is scarce. Therefore, 40 primary sweetpotato varieties with different flesh colors were analyzed by HS-SPME/GC-MS to characterize the volatile compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!