Stenocarpella maydis causes a fungal dry-rot of maize ears and is associated with diplodiosis, a neuromycotoxicosis in cattle grazing harvested maize fields in southern Africa and Argentina. There have been no reports of Stenocarpella metabolites in maize crop residues. Chemical investigations of S. maydis-infected grain from ears exhibiting different levels of ear rot severity following a 2010 field outbreak of Stenocarpella ear rot in Illinois led to the detection of diplodiatoxin and chaetoglobosins M and O as major components in the ethyl acetate extracts by LC-MS. Following post-harvest moist incubation of the S. maydis-infected grain, the amounts of each compound increased (approx. tenfold) and chaetoglobosin K was detected as a dominant toxin. In separate (1)H NMR-based analyses, the neurotoxin diplonine was detected as a minor component in methanol extracts of S. maydis-infected grain as well as cultures of S. maydis isolates from Midwest corn. Proline betaine (=stachydrine) and glycine betaine were also detected in these extracts as major components. This constitutes the first report of chaetoglobosin M, chaetoglobosin O, proline betaine, or glycine betaine from S. maydis, and the first record of diplodiatoxin, diplonine, proline betaine, glycine betaine, or chaetoglobosins M, O, or K being associated with a natural field outreak of S. maydis ear rot.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12550-014-0188-0 | DOI Listing |
Eur J Neurosci
January 2025
Department of Ear, Nose, and Throat, The First Affiliated of Soochow University, Suzhou, China.
This study aimed to investigate the topological properties of brain functional networks in patients with tinnitus of varying durations. A total of 51 tinnitus patients (divided into recent-onset tinnitus (ROT) and persistent tinnitus (PT) groups) and 27 healthy controls (HC) were recruited. All participants underwent resting-state functional MRI and audiological assessments.
View Article and Find Full Text PDFMicrob Pathog
December 2024
IDIAP, Ciudad Del Saber, Panama.
Zea mays is the second most popular cereal crop in Panama. Its production is intended for human and livestock consumption but is threatened by several diseases. We report the occurrence of Fusarium ear rot, a disease that has affected corn production in a specific region of Panama.
View Article and Find Full Text PDFMol Plant Microbe Interact
December 2024
University of Illinois at Urbana-Champaign, Crop Sciences, Urbana, Illinois, United States;
is one of the most important plant-pathogenic fungi that causes disease on wheat and maize, as it decreases yield in both crops and produces mycotoxins that pose a risk to human and animal health. Resistance to Fusarium head blight (FHB) in wheat is well studied and documented. However, resistance to Gibberella ear rot (GER) in maize is less understood, despite several similarities with FHB.
View Article and Find Full Text PDFPlant Dis
December 2024
Maize Research Institute, Phytopathology, Belgrade, Serbia;
Fusarium graminearum species complex (FGSC) includes at least fifteen species which are some of the most significant fungi that infect maize in temperate areas (Sarver et al. 2011). Agroecological conditions in Serbia are suitable for the development of infection by members of FGSC and therefore during the period of 1993-2010, maize samples collected from northern Serbia (46°5'55" N, 19°39'47" E) showed typical symptoms of gibberella ear rot.
View Article and Find Full Text PDFPlant Dis
December 2024
Yunnan Agricultural University College of Plant Protection, , Yunnan Agricultural University, Fengyuan Road 95, Kunming, kunming, China, 650201.
Maize (Zea mays. L) is cultivated globally as a staple food crop, animal feed, and biofuel. However, persistent diseases in maize have led significant yield losses and a decline in grain quality (Yang et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!