Interleukin-7 (IL-7) plays a pivotal role in the development and survival of lymphocytes, but its role in cancer cell responses remains unexplained. In this study, IL-7 treatment resulted in a significant induction in the wound-healing migration and Matrigel invasion of the 5637 bladder cancer cells, but it did not result in cell proliferation. In addition, IL-7 treatment strongly induced MMP-9 expression, and increased the binding activation of NF-κB and AP-1 motifs, the important transcription factors that regulate MMP-9 expression. Moreover, the treatment of 5637 cells with IL-7 stimulated the phosphorylation of ERK1/2. U0126, an ERK1/2-specific inhibitor, blocked IL-7-induced cell migration and invasion, and also suppressed the expression of MMP-9 in the presence of IL-7. Inhibition of the ERK1/2 function consistently reversed the binding activity of NF-κB without altering AP-1 activation in IL-7-stimulated cells. Among the cell cycle regulators examined, only the expression of the cell cycle inhibitor p27KIP1 was induced by IL-7. Moreover, the inhibition of p27KIP1 by small interfering RNA (siRNA) abolished the migration, invasion and phosphorylation of ERK1/2, the expression of MMP-9, and the binding activity of the NF-κB motif in IL-7-stimulated 5637 cells. These results demonstrated that the cell cycle inhibitor p27KIP1 is involved in ERK1/2-mediated MMP-9 expression via activation of the NF-κB binding motif, which leads to the migration and invasion of bladder cancer cells induced by IL-7. These novel results could help explain the migration and invasion of bladder tumor cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/ijo.2014.2290 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!