Epitaxial nanostructures have generated a great deal of interest because of the applications in catalysis, photonics and nanoelectronics. To study the structure and electronic properties at the nanoscale, scanning tunnelling microscopy (STM) has proven a very effective technique due to its extraordinarily high spatial resolution. Growth modes of epitaxial nanostructures depend predominantly on the surface free energy of the deposited material, and that of the substrate onto which it is deposited, leading to layer-by-layer or island growth modes. The strain due to lattice mismatch plays an important role in the formation of semiconductor quantum dot islands via strain-induced transitions in the morphology of epitaxial nanoislands. Examples of the different growth modes observed with STM are presented in this review within a general framework that uses the surface and strain energies to understand the effects that govern nanostructure shapes. Some self-assembled oxide and metal nanostructures, as well as molecular networks, are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cs60458f | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Fudan University - Handan Campus: Fudan University, Department of Chemistry, 2205 Songhu Road, Laboratory of Advanced Materials, 200438, Shanghai, CHINA.
The synthesis of metal-organic frameworks (MOFs) with diverse geometries has captivated considerable interest due to their manifestation of novel and extraordinary properties. While much progress has been made in shaping regular polyhedral single-crystal MOFs, the creation of more complex, topologically intricate nanostructures remains a largely unexplored frontier. Here, we present a refined site-specific anisotropic assembly and etching co-mediation approach to fabricate a series of hierarchical MOF nanohybrids and single-crystal MOFs.
View Article and Find Full Text PDFNanotechnology
January 2025
University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, UMR 8520-IEMN, F-59000 Lille, France.
InSb is a material of choice for infrared as well as spintronic devices but its integration on large lattice mismatched semi-insulating III-V substrates has so far altered its exceptional properties. Here, we investigate the direct growth of InSb on InP(111)substrates with molecular beam epitaxy. Despite the lack of a thick metamorphic buffer layer for accommodation, we show that quasi-continuous thin films can be grown using a very high Sb/In flux ratio.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Eco-chemical Engineering, International S&T Cooperation Foundation of Eco-chemical Engineering and Green Manufacture, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
Crafting anisotropically epitaxial p-n heterostructures with Z-scheme charge transmission is a promising avenue toward excellent photocatalytic efficiency, yet the large lattice mismatch and diverse crystal growth habits between components have often arisen as a big challenge to this goal. Here, anisotropically epitaxial p-n heterostructures with 19.8% lattice mismatch are obtained via a dynamics-mediated seeded growth tactic under reaction temperature as low as 60 °C.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw, 02-668, Poland.
This paper is devoted to the investigation of the plasmonic effect of metal nanoparticles (NPs) formed on the surface of the YAG: Bi, Ce, Yb phosphors in a temperature range between 4 and 300 K. Combination of a thin conversion layer with silver plasmonic nanostructures leads to increase of sensitizer absorption and emission efficiency. Enhancement of Bi luminescence in YAG epitaxial films with Ag NPs was observed upon cooling the samples below 200 K.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
Narrow-gap InN is a desirable candidate for near-infrared (NIR) optical communication applications. However, the absence of lattice-matched substrates impedes the fabrication of high-quality InN. In this paper, we employed Molecular Beam Epitaxy (MBE) to grow nanostructured InN with distinct growth mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!