Peripheral self-tolerance eliminates lymphocytes specific for tissue-specific antigens not encountered in the thymus. Recently, we demonstrated that lymphatic endothelial cells in mice directly express peripheral tissue antigens, including tyrosinase, and induce deletion of specific CD8 T cells via Programmed Death Ligand-1 (PD-L1). Here, we demonstrate that high-level expression of peripheral tissue antigens and PD-L1 is confined to lymphatic endothelial cells in lymph nodes, as opposed to tissue (diaphragm and colon) lymphatics. Lymphatic endothelial cells in the lymph node medullary sinus express the highest levels of peripheral tissue antigens and PD-L1, and are the only subpopulation that expresses tyrosinase epitope. The representation of lymphatic endothelial cells in the medullary sinus expressing high-level PD-L1, which is necessary for normal CD8 T cell deletion kinetics, is controlled by lymphotoxin-β receptor signaling and B cells. Lymphatic endothelial cells from neonatal mice do not express high-level PD-L1 or present tyrosinase epitope. This work uncovers a critical role for the lymph node microenvironment in endowing lymphatic endothelial cells with potent tolerogenic properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913631 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087740 | PLOS |
JCI Insight
January 2025
Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, United States of America.
Somatic activating mutations in KRAS can cause complex lymphatic anomalies (CLAs). However, the specific processes that drive KRAS-mediated CLAs have yet to be fully elucidated. Here, we used single-cell RNA sequencing to construct an atlas of normal and KrasG12D-malformed lymphatic vessels.
View Article and Find Full Text PDFSmall Methods
January 2025
Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland.
The bioengineering of vascular networks is pivotal to create complex tissues and organs for regenerative medicine applications. However, bioengineered tissues comprising an arterial and venous plexus alongside a lymphatic capillary network have not been explored yet. Here, scRNA-seq is first employed to investigate the arterio-venous endothelial cell marker patterning in human fetal and juvenile skin.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Lymphangiogenesis is vital for tissue fluid homeostasis, immune function, and lipid absorption. Abnormal lymphangiogenesis has been implicated in several diseases such as cancers, inflammatory, and autoimmune diseases. In this study, we elucidate the role of tsRNA-0032 in lymphangiogenesis and its molecular mechanism.
View Article and Find Full Text PDFThe liver lymphatic system plays a critical role in maintaining interstitial fluid balance and immune regulation. Efficient lymphatic drainage is essential for liver homeostasis, but its role in liver disease progression remains poorly understood. In cirrhosis, lymphangiogenesis initially compensates for increased lymph production, but impaired lymphatic drainage in advanced stages may lead to complications such as ascites and portal hypertension.
View Article and Find Full Text PDFOncol Res
January 2025
Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
Background: Patients with gastric cancer (GC) are prone to lymph node metastasis (LNM), which is an important factor for recurrence and poor prognosis of GC. Nowadays, more and more studies have confirmed that exosomes can participate in tumor lymphangiogenesis. An in-depth exploration of the pathological mechanism in the process of LNM in GC may provide effective targets and improve the diagnosis and treatment effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!