Momilactone B, a terpenoid phytoalexin present in rice bran, has been shown to exhibit several biological activities. The present study was conducted using cultured human leukemia U937 cells to elucidate the possible mechanisms by which momilactone B exerts its anticancer activity, which to date has remained poorly understood. Momilactone B treatment of U937 cells resulted in a dose-dependent inhibition of cell growth and induced apoptotic cell death as detected by chromatin condensation, DNA fragmentation, the cleavage of poly(ADP-ribose) polymerase and Annexin V-FITC staining. Flow cytometric analysis revealed that momilactone B resulted in G1 arrest in cell cycle progression, which was associated with the dephosphorylation of retinoblastoma protein (pRB) and enhanced binding of pRB with the E2F transcription factor family proteins. Treatment with momilactone B also increased the expression of cyclin-dependent kinase (Cdk) inhibitor p21Waf1/Cip1 in a p53-independent manner, without any noticeable changes in G1 cyclins and cyclin-dependent kinases (Cdks), except a slight decrease in cyclin E. Moreover, in vitro kinase assay indicated that momilactone B significantly decreased Cdk4- and Cdk6-associated kinase activities through a notably increased binding of p21 to Cdk4 and Cdk6. Our results demonstrated that momilactone B caused G1 cell cycle arrest and apoptosis in U937 cells through the induction of p21 expression, inhibition of Cdk/cyclin-associated kinase activities, and reduced phosphorylation of pRB, which may be related to anticancer activity.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2014.3008DOI Listing

Publication Analysis

Top Keywords

u937 cells
16
cell cycle
12
momilactone
8
arrest cell
8
leukemia u937
8
cyclin-dependent kinase
8
inhibitor p21waf1/cip1
8
anticancer activity
8
kinase activities
8
cell
5

Similar Publications

Mesenchymal stem cells (MSCs), which are multipotent adult cells with many therapeutic effects, can be derived from stromal tissues. MSCs also exert immunoregulatory effects through extracellular vesicles (EVs), cell membrane structures that carry paracrine factors. It is thought that the mediators (cytokines, growth factors, etc.

View Article and Find Full Text PDF

How wine blending influences their biological activity: A case study of Cabernet Sauvignon and Merlot coupages.

Food Chem

December 2024

Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia. Electronic address:

Blending different grape varieties or wines is essential in winemaking to enhance sensory attributes, but could potentially impact the biological activity of the final product. This study investigates the polyphenolic profile and bioactivities of monovarietal wines Cabernet Sauvignon (CS) and Merlot (M), their blends in three different ratios (CS1M1, CS3M1, CS1M3), as well as one commercial coupage (CSM). Enzyme inhibition (α-amylase, α-glucosidase, lipase, tyrosinase), antioxidant properties (inhibition of AAPH-induced ROS generation in U937 cells and lipid peroxidation), and anti-inflammatory properties (inhibition of PGE production in U937 cells) were assessed.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the urgent need for improved treatments for chronic myeloid leukemia (CML), given the high incidence and mortality rates among men and women.
  • It investigates the potential enhanced effects of combining inecalcitol with existing therapies imatinib and dasatinib on various cancer cell lines.
  • Results showed that while some cell lines were resistant, AR-230 and LAMA-84-s exhibited significant cell-killing effects, suggesting that the effectiveness of combined treatments varies depending on the specific cell type.
View Article and Find Full Text PDF

Effects of ERK1/2 Inhibitors on the Growth of Acute Leukemia Cells.

Anticancer Res

December 2024

Department of Laboratory Medicine, Institute of Science Tokyo, Tokyo, Japan

Background/aim: Extracellular signal-regulated kinases (ERK)1/2 are important regulatory proteins that control cell proliferation and survival, playing a significant role in cancer progression, metastasis, and chemoresistance. This study investigated the effects of ERK1/2 inhibitors on the in vitro growth of acute leukemia cell lines.

Materials And Methods: Three ERK1/2 inhibitors were used: SCH772984, temuterkib (LY3214996), and ulixertinib (BVD-523).

View Article and Find Full Text PDF

Macrophages are the most important immune cells affecting the formation of atherosclerotic plaque. Nevertheless, the mechanisms that promote formation of foamy macrophages during atherogenesis remain poorly understood. This study explored the effects of Farnesoid X receptor (FXR) and hepatic lipase (HL, encoded by LIPC) on atherogenesis, particularly in foamy macrophage formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!