Glycation and nitrotyrosination are pathological posttranslational modifications that make proteins prone to losing their physiological properties. Since both modifications are increased in Alzheimer's disease (AD) due to amyloid-β peptide (Aβ) accumulation, we have studied their effect on albumin, the most abundant protein in cerebrospinal fluid and blood. Brain and plasmatic levels of glycated and nitrated albumin were significantly higher in AD patients than in controls. In vitro turbidometry and electron microscopy analyses demonstrated that glycation and nitrotyrosination promote changes in albumin structure and biochemical properties. Glycated albumin was more resistant to proteolysis and less uptake by hepatoma cells occurred. Glycated albumin also reduced the osmolarity expected for a solution containing native albumin. Both glycation and nitrotyrosination turned albumin cytotoxic in a cell type-dependent manner for cerebral and vascular cells. Finally, of particular relevance to AD, these modified albumins were significantly less effective in avoiding Aβ aggregation than native albumin. In summary, nitrotyrosination and especially glycation alter albumin structural and biochemical properties, and these modifications might contribute for the progression of AD.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-130914DOI Listing

Publication Analysis

Top Keywords

glycation nitrotyrosination
12
albumin
10
alzheimer's disease
8
amyloid-β peptide
8
properties modifications
8
biochemical properties
8
glycated albumin
8
native albumin
8
posttranslational nitro-glycative
4
modifications
4

Similar Publications

The present study aimed to investigate the effects of the ethanol extract (GPEE) on oxidative stress, inflammation, and metabolic markers in a rat model of streptozotocin-induced diabetes mellitus (DM). Phytochemical analysis using high-performance liquid chromatography coupled with mass spectrometry was performed to measure the total phenolic and flavonoid contents. In vitro antioxidant activity was evaluated through DPPH, FRAP, HO, and NO scavenging tests, and the in vivo effects of the GPEE were assessed in streptozotocin-induced DM rats.

View Article and Find Full Text PDF

Background: Despite enormous advances in diabetes treatment, women with type 1 diabetes mellitus (DM) still experience delayed menarche, menstrual irregularities, fewer pregnancies, and a higher rate of stillbirths compared to women without the disease. Due to the fact that type 1 DM occurs at a young age, the preservation of reproductive health is one of the most important goals of treatment.

Aims: The aim of this study was to evaluate the relationship between different glycemic profiles and changes in the pro-oxidant-antioxidant balance and ovarian follicular apparatus in reproductive-age patients with type 1 DM.

View Article and Find Full Text PDF

The aim of this study was to improve insulin sensitivity in fructose-treated animals by ingestion of flavonoid quercetin. Several signs of insulin resistance have been developed in rats by drinking 10% fructose solution for 9 weeks. The effect of 6-week-gavage-administrated quercetin (20 mg/kg/day in 1% methyl cellulose solution) was monitored.

View Article and Find Full Text PDF

Nitrosative stress promotes protein glycoxidation, and both processes can occur during an infection with the SARS-CoV-2 virus. Therefore, the aim of this study was to assess selected nitrosative stress parameters and protein glycoxidation products in COVID-19 patients and convalescents relative to healthy subjects, including in reference to the severity of COVID-19 symptoms. The diagnostic utility of nitrosative stress and protein glycoxidation biomarkers was also evaluated in COVID-19 patients.

View Article and Find Full Text PDF

Melanoxetin: A Hydroxylated Flavonoid Attenuates Oxidative Stress and Modulates Insulin Resistance and Glycation Pathways in an Animal Model of Type 2 Diabetes .

Pharmaceutics

February 2024

Associated Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.

Type 2 diabetes (DM) continues to escalate, necessitating innovative therapeutic approaches that target distinct pathways and address DM complications. Flavonoids have been shown to possess several pharmacological activities that are important for DM. This study aimed to evaluate the in vivo effects of the flavonoid melanoxetin using Goto-Kakizaki rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!