Angiostrongylus cantonensis is the most common infectious agent causing eosinophilic meningitis and is present in Taiwan, Thailand and the Pacific islands. Clinical symptoms vary within different endemic regions, and their severity is probably dependent on the number of ingested parasites and the diversity among strains. The experimentally definitive host is the rat, and non-permissive hosts are certain mammals such as humans and mice. In this study, the partial gene sequences of two A. cantonensis strains isolated from five different regions in Taiwan were selected and molecularly analyzed. The internal transcribed spacer gene and cytochrome-c oxidase subunit I gene sequences of the Hualien (H) strain of A. cantonensis differed from those of the Pingtung (P) strain and the other three strains by 19% and 11%, respectively. We analyzed the infectivity, fecundity, and development of the H and P strain in rats and host pathogenicity in mice inoculated with both strains. The number of the emerged first-stage larvae, adult recovery, and average length of adults in Sprague-Dawley rats significantly differed between rats inoculated with the H and P strain. Young adult recovery, average length of young adults, eosinophil counts in the cerebrospinal fluid (CSF), glutathione peroxidase concentration, levels of reactive oxygen species as well as malondialdehyde concentration in the CSF, and the survival of mice significantly differed between BALB/c mice inoculated with the H and P strain. The H strain of A. cantonensis had lower infectivity, delayed fecundity, and poor development in rats, and caused milder pathology and lower mortality in mice than the P strain. These data clearly indicate that the H strain of A. cantonensis is a pathogenically distinct strain with lower infectivity to its definitive host, and causing mild pathogenic symptoms to its non-permissive host.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actatropica.2014.01.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!